
 DSPs and the DSP Interface ____ ___ ___ ___ _________

 1. DSPS AND THEIR ENVIRONMENT ____ ___ _____ ___________

 Device Support Programs (DSPs) are a collections of routines
 with a standard interface designed to make access to a
 variety of devices as uniform as possible.

 A program called the DSP Interface is provided to do
 parameter and operation sequence checking for the DSPs. The
 DSP Interface was originally designed by John Hogg, and Alan
 Ballard. The calling sequence for some of the entry points
 was later revised to make it easier to to fit the DSP
 Interface in with the requirements of the MTS job program.

 a. Environment ___________

 The DSP environment is built on the environment of the
 subtasking monitor. DSPs should request services via the
 routines provided by the subtasking monitor, or routines
 described in this document. MTS system subroutines should
 be used with caution, since DSPs in general should be able
 to run in non-MTS tasks. Some MTS system services do task
 level synchronous waits, which might conflict with a
 subtasking environment.

 All DSP Interface procedures, and DSP entry points, use an
 S-type calling sequence. All DSP Interface procedures are
 called according to the RM conventions, and require R11 to
 contain the address of a pseudo-register vector (as
 initialized by DSPPRVI) which contains the addresses of
 various service routines, and tables. The DSPs are called
 with the same pseudo-register vector address in R11.

 b. Entry Points _____ ______

 Each DSP begins with a transfer vector defining the entry
 points. This is defined by the macro DSPTV in
 RMGR:RMGR*M. The first 3 characters from the label on the
 DSPTV macro replace the "DSP" in the routine names
 described below. The routine names and order defined by
 this are:

 DSPINIT - responsible for acquiring the device.
 DSPOPEN - prepares to do I/O in the manner requested.
 DSPREAD - reads a record from the device.
 DSPWRIT - writes a record to the device.
 DSPCONT - controls the device, or action of the DSP.
 DSPSENS - returns state of device, and/or DSP.
 DSPCLOS - returns to state ready for new OPEN.
 DSPRELE - releases the device and cleans up.

 The corresponding RSECTs defined by the macro are INIRCT,
 OPERCT, REARCT, etc.

 DSPs and the DSP Interface 3

 2. THE DSP INTERFACE ___ ___ _________

 Besides parameter and sequence checking, the DSP Interface is
 responsible for selecting which DSP to use (based on device
 type). The DSP interface creates a control block called a
 File, Device or Intertask Block (FDIB) to keep track of
 individual invocations of the DSP Interface.

 a. Entry Points _____ ______

 The entry points in the DSP Interface are:

 RMGFDIB - checks parameters, creates FDIB, calls DSPINIT.
 RMOPEN - checks parameters, calls DSPOPEN.
 RMREAD - checks parameters, calls DSPREAD.
 RMWRITE - checks parameters, calls DSPREAD.
 RMCNTRL - checks parameters, calls DSPREAD.
 RMSENSE - checks parameters, calls DSPREAD.
 RMCLOSE - checks parameter, calls DSPREAD.
 RMFFDIB - checks parameter, calls DSPRELE, frees FDIB.

 Each of these DSP Interface procedure calls its
 corresponding DSP entry with the original parameter list,
 except for RMGFDIB, which constructs an FDIB and passes it
 to the DSPINIT entry point.

 Additionally the following are provided.

 FSTREAD - calls DSPREAD with no checking.
 FSTWRITE - calls DSPWRIT with no checking.
 RMCKFDIB - verifies that an FDIB is valid.

 b. DSP Selection ___ _________

 The DSP to use for a particular invocation of the DSP
 Interface is selected by RMGFDIB based on the device type
 given as a parameter. The type is matched to a particular
 DSP through the use of DSP type tables. RMGFDIB scans two
 tables to try and match the given type to a DSP. The
 address of the first table scanned is found in the pseudo-
 register UDSPTAB. The address of this table is provided
 by applications where applicable to define special or
 alternate DSPs. The address of the second table is found
 in the pseudo-register DSPTAB. This table contains all
 the default DSPs.

 The format of the table is a fullword containing the
 number of table entries, followed by the entries. Each
 entry is sixteen bytes long, and consists of an eight byte
 type, followed by a halfword maximum I/O length, followed
 by a halfword maximum name length, followed by the address
 of the DSP transfer vector.

 Table entries may be generated by the DSPTAB macro in

 DSPs and the DSP Interface 4

 RMGR:RMGR*M.

 The first DSP type matching the requested type is
 selected.

 c. Parameter Checking _________ ________

 A DSP may assume that all parameter addresses passed to it
 are valid except that for DSPREAD, only the first byte of ______
 the buffer has been checked as addressable, and for
 DSPWRIT, only the first and last bytes have been checked.
 It may also assume that the FDIB pointer is valid, and
 points to a valid FDIB.

 d. Sequence Checking ________ ________

 The DSP Interface will check for correct operation
 sequence; e.g., calls to DSPREAD will not be permitted
 unless the FDIB is open, calls to DSPOPEN will not be
 permitted unless it is closed. The DSP will not be called
 if a sequence error is detected.

 Fields are set in the FDIB on each call to the DSP
 interface indicating the last operation performed, the
 return address of the last caller (these will be set
 before calling the DSP), and the last return code.

 e. Error Handling _____ ________

 A message indicating clearly the flavour of the error, the
 entry point called, and the callers return address is
 issued for every error detected by the DSP Interface. The
 messages conform to the Resource Manager message scheme,
 and are emitted to the on-unit of the subtask making the
 erroneous call. If the DSP Interface detects any errors
 it will not call the DSP routine.

 For errors detected by the DSP, a message should be
 issued, by the DSP, and return made with the appropriate
 return code. The return code received from a DSP will be
 passed on the the caller of the DSP Interface routine
 unchanged.

 f. Return Codes ______ _____

 The following return codes are used for all DSP Interface
 procedures and DSPs:

 0 O.K.

 4 Exception (full on write, eof on read etc.)

 8 Parameter or sequence error. This will normally be
 reported by the DSP Interface routine.

 DSPs and the DSP Interface 5

 12 External error (hardware, external software, bad data
 format on OMR card, etc.)

 16 Internal Error. (Software error in DSP.)

 20 Wait Interrupted.

 DSPs and the DSP Interface 6

 3. DSP INTERFACE EXTERNAL PROCEDURES ___ _________ ________ __________

 Routine: RMGFDIB

 Location: DSPLCS

 Call Type: S(4)

 Purpose: To create an invocation the DSP Interface, and
 initialize the DSP.

 Input parameters: 1 FDINAME, (File, Device, or
 Intertask name).
 2 halfword length of FDINAME.
 3 eight character type.
 4 location in which to return FDIB
 pointer.

 Return values: none

 Return codes: 0-20 standard meanings
 24 file, device etc. is busy.
 28 file, device etc. is not
 operational.
 32 an FDIB already exits for this
 FDINAME.

 Description:

 RMGFDIB acquires and initializes a FDIB, looks for the DSP in
 the type tables and calls the DSPINIT entry of the DSP matched.
 The DSPINIT routine should acquire the device and do what is
 necessary for its initialization.

 The FDIB contains a pointer to the FDINAME and length. The
 pointer points to a halfword length followed by the FDINAME.
 The name will always be followed by a terminating blank (which
 may be useful in messages etc.) The blank is not included in the
 length.

 A field is provided in the FDIB for the DSP to chain any space
 it needs.

 If the return code from RMGFDIB is > 0, the FDIB will not have
 been created. If the DSPINIT procedure returns a non-zero
 return code, the FDIB created by RMGFDIB, and the space for the
 FDINAME will be released.

 DSPs and the DSP Interface 7

 Routine: RMFFDIB

 Location: DSPLCS

 Call Type: S(1)

 Purpose: To destroy an invocation the DSP Interface.

 Input parameters: 1 FDIB pointer.

 Return values: none

 Return codes: 0-20 standard meanings

 Description:

 RMFFDIB checks that the FDIB pointer is valid, and calls the
 DSPRELE entry point in the DSP. When DSPRELE returns, the FDIB
 is released.

 The DSP should clean up, and release the device.

 DSPs and the DSP Interface 8

 Routine: RMOPEN

 Location: DSPLCS

 Call Type: S(2)

 Purpose: To prepare the DSP for I/O.

 Input parameters: 1 FDIB pointer.
 2 access code.

 Return values: none

 Return codes: 0-20 standard meanings

 Description:

 RMOPEN checks that the FDIB pointer is valid, that the access
 code is addressable, and calls the DSPOPEN entry point in the
 DSP.

 The DSP should check the validity of the access code, and
 prepare for subsequent read, write, control and sense calls.
 The meaning of the access code is DSP dependent.

 DSPs and the DSP Interface 9

 Routine: RMCLOSE

 Location: DSPLCS

 Call Type: S(1)

 Purpose: To cause the DSP complete all pending operations.

 Input parameters: 1 FDIB pointer.

 Return values: none

 Return codes: 0-20 standard meanings

 Description:

 RMCLOSE checks that the FDIB pointer is valid, and calls the
 DSPCLOS entry point in the DSP.

 The DSP should flush all buffers, terminate all I/O operations
 etc.

 DSPs and the DSP Interface 10

 Routine: RMREAD/FSTREAD

 Location: DSPLCS

 Call Type: S(8)

 Purpose: To read a record from the file or device.

 Input parameters: 1 FDIB pointer.
 2 buffer to read into.
 3 halfword length of the buffer.
 4 8 bytes of modifiers, MTS
 compatible
 5 halfword length of data placed in
 buffer by the DSP.
 6 record/line number of record read.
 7 notify code.
 8 actual length of data record.

 Return values: none

 Return codes: 0-20 standard meanings

 Description:

 RMREAD checks that the FDIB pointer is valid, that the other
 parameters are addressable in the required mode, and calls the
 DSPREAD entry point in the DSP. Parameters 2, and 5 through 8
 are modified by the DSP. The record/line number is a parameter
 to the DSP, if an indexed operation is indicated by the
 modifiers.

 A notify code should always be returned by the DSP, and if the
 code is non-zero, and notify is specified in the modifiers, a
 return code of 4 should be given. Return code 4 is given by the
 DSP on end-of-file regardless of the setting of the notify
 modifier.

 The standard notify codes for RMREAD are:

 4 - end-of-file
 8 - record truncated.

 The routine FSTREAD does no parameter checking, but just calls
 the DSPREAD entry point. It is useful in applications where one
 is sure of the parameters, and/or the cost of the parameter
 checking is too high a price to pay.

 DSPs and the DSP Interface 11

 Routine: RMWRITE/FSTWRITE

 Location: DSPLCS

 Call Type: S(7)

 Purpose: To write a record to the file or device.

 Input parameters: 1 FDIB pointer.
 2 buffer containing data to write.
 3 halfword length of the data in the
 buffer.
 4 8 bytes of modifiers, MTS
 compatible
 5 halfword length of data written by
 the DSP.
 6 record/line number of record
 written.
 7 notify code.

 Return values: none

 Return codes: 0-20 standard meanings

 Description:

 RMWRITE checks that the FDIB pointer is valid, that the other
 parameters are addressable in the required mode, and calls the
 DSPWRIT entry point in the DSP. Parameters 5 through 7 are
 modified by the DSP. The record/line number is a parameter to
 the DSP, if an indexed operation is indicated by the modifiers.

 A notify code should always be returned by the DSP, and if the
 code is non-zero, and notify is specified in the modifiers, a
 return code of 4 should be given. Return code 4 is given by the
 DSP for a device full condition regardless of the setting of the
 notify modifier.

 The standard notify codes for RMWRITE are:

 4 - device full.
 8 - record truncated.

 The routine FSTWRITE does no parameter checking, but just calls
 the DSPWRIT entry point. It is useful in applications where one
 is sure of the parameters, and/or the cost of the parameter
 checking is too high a price to pay.

 DSPs and the DSP Interface 12

 Routine: RMCNTRL

 Location: DSPLCS

 Call Type: S(3)

 Purpose: To control the operation of the file, device or DSP.

 Input parameters: 1 FDIB pointer.
 2 control command.
 3 halfword length of control
 command.

 Return values: none

 Return codes: 0-20 standard meanings

 Description:

 RMCNTRL checks that the FDIB pointer is valid, that the other
 parameters are addressable, that the length of the control
 command is reasonable (currently <= 512 bytes) and calls the
 DSPCONT entry point in the DSP.

 Control commands should be passed one at a time to RMCNTRL.

 DSPs and the DSP Interface 13

 Routine: RMSENSE

 Location: DSPLCS

 Call Type: S(6,1)

 Purpose: To sense the state of the file, device, DSP etc.

 Input parameters: 1 FDIB pointer.
 2 sense command.
 3 halfword length of sense command.
 4 sense information returned by DSP.
 5 halfword length of information
 returned.
 6 halfword maximum length of return
 area.

 Return values: 1 - code for type of information
 returned.

 Return codes: 0-20 standard meanings

 Description:

 RMSENSE checks that the FDIB pointer is valid, that the other
 parameters are addressable, and calls DSPSENS entry point in the
 DSP.

 The DSP should put the information in the buffer if it fits,
 update the length and return with a code in R0 indicating what
 kind of information is present. The currently defined codes
 are:

 1 - information is a binary number.
 2 - information is a character string.

 Sense commands should be passed one at a time to RMSENSE.

 DSPs and the DSP Interface 14

 Routine: RMCKFDIB

 Location: DSPLCS

 Call Type: S(1)

 Purpose: To verify the validity of an FDIB pointer.

 Input parameters: 1 FDIB pointer.

 Return values: none

 Return codes: 0 O.K.
 4 pointer does not point to an FDIB.

 Description:

 RMCKFDIB scans the FDIB chain to verify that the pointer points
 to one of the entries.

 DSPs and the DSP Interface 15

 4. DSP INTERFACE INTERNAL PROCEEDURES ___ _________ ________ ___________

 These are described here for completeness.

 Routine: CPLIST

 Location: internal

 Call Type: R(4,1)

 Purpose: To verify the addressabilty of the parameter list, and
 the validity of the FDIB pointer.

 Input parameters: 1 number of parameter addresses in
 parameter list.
 2 parameter list pointer.
 3 DSP interface callers address (for
 error messages).
 4 address of the Interface routine
 name (for error messages).

 Return values: 1 FDIB pointer.

 Return codes: 0 O.K.
 4 FDIB pointer is invalid (no
 message issued in this case).
 8 parameter list is not addressable
 in whole or in part.

 Description:

 CPLIST just verifies that the parameter list is addressable, and
 that the first parameter is indeed an FDIB pointer.

 DSPs and the DSP Interface 16

 Routine: CRWP

 Location: internal

 Call Type: R(2,0)

 Purpose: To verify the addressabilty of the parameters for
 RMREAD or RMWRITE.

 Input parameters: 1 FDIB pointer.
 2 parameter list pointer.

 Return values: none

 Return codes: 0 O.K.
 8 some parameter is not addressable,
 or is invalid (a message has been
 issued.)

 Description:

 CRWP makes sure that all parameters are addressable in the mode
 required, and also checks that the buffer length is not
 negative.

 DSPs and the DSP Interface 17

 Routine: CCSP

 Location: internal

 Call Type: R(2,0)

 Purpose: To verify the addressabilty of the parameters for
 RMCNTRL or RMSENSE.

 Input parameters: 1 FDIB pointer.
 2 parameter list pointer.

 Return values: none

 Return codes: 0 O.K.
 8 some parameter is not addressable,
 or is invalid (a message has been
 issued.)

 Description:

 CCSP makes sure that all parameters are addressable in the mode
 required, and checks the validity of the command length.

 DSPs and the DSP Interface 18

 5. DSP SERVICE ROUTINES ___ _______ ________

 The following set of routines are provided as a set of
 service procedures for some of the common DSP required
 services not provided by the subtasking monitor.

 Routine: DSPPRVI

 Location: DSPLCS

 Call Type: R(1,0)

 Purpose: To initialize the pseudo-register vector whose address
 is in R11.

 Input parameters: 1 total size of the pseudo-register
 vector.

 Return values: none

 Return codes: 0 OK

 Description:

 This routine assumes (as do all others) that the pseudo-register
 vector address is in R11. The pseudo-register vector is
 initialized by calling MNTPRVI, and the address of the default
 DSP type and DSP External form message tables are filled in.

 DSPs and the DSP Interface 19

 Routine: MTSDSPRV

 Location: DSPLCS

 Call Type: R(0,0)

 Purpose: To initialize certain pseudo-registers in the pseudo-
 register vector for an MTS environment.

 Input parameters: none

 Return values: none

 Return codes: 0 OK

 Description:

 This routine calls MTSMNPRV to set up the subtasking monitor for
 for an MTS environment. The addresses of of RMTKINFO and
 RMTKCINF in the pseudo-register vector are replaced by MTTKINFO
 and MTTKCINF respectively. These use MTS’s GUINFO and CUINFO
 routines.

 DSPs and the DSP Interface 20

 Routine: GETPAR

 Location: DSPLCS

 Call Type: R(1,2)

 Purpose: A simple token scanning routine.

 Input parameters: 1 address of a two word block,
 containing the current length and
 address of the string to be
 scanned. These are updated by
 GETPAR.

 Return values: 1 length of token.
 2 address of token.

 Return codes: 0 O.K.
 4 end of string, no more tokens.

 Description:

 The address and length of the next token in the string are
 returned. A token is defined as a sequence of non-blank
 characters.

 DSPs and the DSP Interface 21

 Routine: KEYWORD

 Location: DSPLCS

 Call Type: R(4,4)

 Purpose: A simple keyword routine.

 Input parameters: 1 length of string containing
 potential keyword.
 2 address of the string.
 3 address of keyword table.
 4 address of where to put LHS
 keyword, or zero.

 Return values: 1 R0 value from table.
 2 R1 value from table.
 3 length of right hand side.
 4 address of right hand side.

 Return codes: 0 O.K.
 4 Left hand side is not in table.

 Description:

 This routine only processes keyword expressions of the form
 LHS=RHS, or LHS. Each table entry has the following format:

 AL1(L’keyword),AL1(minlen),C’keyword’,AL4(R1 value),AL4(R0
 value)

 The table is terminated by X’FF’.

 Table entries may be generated by the TBLENT macro in
 RMGR:RMGR*M.

 DSPs and the DSP Interface 22

 Routine: CVTDB

 Location: DSPLCS

 Call Type: R(2,1)

 Purpose: To convert an EBCDIC string representing a decimal
 number to binary.

 Input parameters: 1 length of string.
 2 address of string.

 Return values: 1 binary value.

 Return codes: 0 O.K.
 4 string does not represent a valid
 decimal number, or is too long.

 DSPs and the DSP Interface 23

 Routine: CVTHB

 Location: DSPLCS

 Call Type: R(2,1)

 Purpose: To convert an EBCDIC string representing a hexadecimal
 number to binary.

 Input parameters: 1 length of string.
 2 address of string.

 Return values: 1 binary value.

 Return codes: 0 O.K.
 4 string does not represent a valid
 hexadecimal number, or is too
 long.

 DSPs and the DSP Interface 24

 Routine: CVTLNRB

 Location: DSPLCS

 Call Type: R(2,1)

 Purpose: To convert an external form line number to internal
 form.

 Input parameters: 1 length of string.
 2 address of string.

 Return values: 1 binary value.

 Return codes: 0 O.K.
 4 string does not represent a valid
 line number.

 DSPs and the DSP Interface 25

 Routine: DSPCLEAN

 Location: DSPLCS

 Call Type: R(0,0)

 Purpose: To clean up the DSP world in case of fatal error.

 Input parameters: none

 Return values: none

 Return codes: 0 O.K.

 Description:

 This routine will try to release all devices, intertask nodes,
 and files that are currently active. It attempts to close open
 files so that data will not be lost.

 DSPs and the DSP Interface 26

 Routine: RMTKINFO/MTTKINFO

 Location: pseudo-register vector

 Call Type: R(3,0)

 Purpose: To return information about the task or environment.

 Input parameters: 1 address of 8 character information
 item keyword.
 2 address of returns area.
 3 length of returns area.

 Return values: none

 Return codes: 0 O.K.
 4 invalid keyword.
 20 wait aborted.

 Description:

 This routine returns various items of information about the task
 and environment. It is similar to the MTS routine GUINFO. The
 routine MTSDSPRV replaces the address of RMTKINFO in the pseudo-
 register vector with MTTKINFO.

 DSPs and the DSP Interface 27

 Routine: RMTKCINF/MTTKCINF

 Location: pseudo-register vector

 Call Type: R(3,0)

 Purpose: To change information about the task or environment.

 Input parameters: 1 address of 8 character information
 item keyword.
 2 address new information.
 3 length new information.

 Return values: none

 Return codes: 0 O.K.
 4 invalid keyword, or change not
 allowed.
 20 wait aborted.

 Description:

 This routine changes various items of information about the task
 and environment. It is similar to the MTS routine CUINFO. The
 routine MTSDSPRV replaces the address of RMTKCINF in the pseudo-
 register vector with MTTKCINF.

 DSPs and the DSP Interface 28

 6. THE MESSAGE EXPANSION SYSTEM ___ _______ _________ ______

 This is a brief overview of the Resource Manager message
 system. It is included here, because the message system
 routines are used by the DSPs and the DSP interface, and are
 therefore DSP services.

 The message expansion system is independent of the Resource
 Manager at the low-level routine interface. It is described
 here, however, in terms of the Resource Manager environment.

 a. Concept _______

 The Message Expansion System is a general purpose scheme
 that allows for a standardization of system messages.
 Programs will emit a Canonical Form Message (CFM) which
 contains values identified by keywords, and in general no
 message text. The CFM is in a form that is fairly easily
 handled by programs. Each different message is given a
 unique message number which is used in expanding the
 message data into human readable form. Each CFM is
 associated with one or more Expanded Form Messages (EFMs).
 An EFM is a message in which keywords identify the data
 items (values) which are to be supplied by the CFM.

 b. Definition Of Terms __________ __ _____

 The internals of the Message Expansion System are
 relatively complicated, but the external interfaces are
 fairly easy to use. First, though, a few definitions.

 ®® MSGCC Packet _____ ______

 A new concept and command for MSGCC. Instead of
 generating an S-constant for an operand, MSGCC will
 produce a "packet". A packet consists of a keyword,
 preceded by its length and a value, preceded by its
 length.

 An example of a packet in assembler notation:

 AL1(03),C’CSW’,AL(8),X’0160350000000100’

 ®® Canonical Form Message - CFM _________ ____ _______ _ ___

 Instead of emitting a text message, a program, using
 the message expansion system, causes a CFM to be
 issued. The CFM consists of a header, followed by a
 set (maybe empty) of packets. The header has the
 following format:

 i - globally unique message number.

 ii - A 4 character ID of the module that is sending
 the message.

 DSPs and the DSP Interface 29

 iii - An invocation ID for the calling module.

 iv - Store clock value of the time that the message
 was sent.

 v - A message reference (sequence) number.

 vi - Length of the optional packet list.

 ®® CFM Prototype ___ _________

 CFM prototypes are input to the system message routine
 MSGCC, and are normally produced via the CFM, or PCFM
 macros.

 An example of a CFM prototype is:

 CFM #DSPACER,MODULE=FDSP,*
 FDINAME((0(R6),END=C’ ’,LEN=#RMFNLEN))
 CEND

 #DSPACER is the unique number and "FDSP" is the module
 ID. There is one keyword value pair with keyword
 "FDINAME" and value pointed to by register 6, which is
 #RMFNLEN bytes long, or if shorter is terminated by a
 blank.

 The macros allow continuation by specifying * as the
 last operand on the CFM line. The list is then
 terminated with a CEND statement.

 ®® Expanded Form Message - EFM ________ ____ _______ _ ___

 An EFM is a message fit for human consumption, and is
 obtained by the substitution of the CFM packets into an
 EFM prototype.

 ®® EFM Prototype ___ _________

 EFM prototypes are also input to the system message
 routine MSGCC, and are normally produced via the EFM
 macro.

 An example of an EFM prototype is:

 EFM #DSPACER,SEVERITY=8,VERBOSITY=1
 PHRASE ’DSP detected access code error for ’
 PHRASE (FDINAME)
 PHRASE ’.’,END

 #DSPACER is the unique message number for this message.
 The severity and verbosity are filters that can be used
 to control whether the message gets seen at all, and
 what form of verbosity it takes. In order for the
 verbosity to be meaningful, several EFM prototypes of
 different verbosities have to exist.

 DSPs and the DSP Interface 30

 c. EFM Tables ___ ______

 For the Resource Manager, there are three levels of
 messages defined. The first is called the DSP level. DSP
 level messages have numbers in the range 1,000,000 to
 1,999,999. The second level is the Resource Manager
 level, with message numbers in the range 2,000,000 to
 2,999,999. The last level is the so called spooling
 system level with message numbers in the range 3,000,000
 to 3,999,999.

 The address of the default EFM prototype table for a given
 level is placed in the pseudo-register vector by the
 pseudo-register vector initialization routine for that
 level. The table addresses are found in the pseudo-
 registers RMEFMT1, RMEFMT2, and RMEFMT3. These pseudo-
 registers are 8 bytes long. The fist 4 bytes is for the
 address of a user supplied EFM prototype table, and the
 second 4 bytes is for the address of the default table.
 The user supplied table is scanned first, and then if no
 EFM prototype for the message is found there, the default
 table is searched.

 DSPs and the DSP Interface 31

 7. MESSAGE EXPANSION SYSTEM ROUTINES _______ _________ ______ ________

 There are two basic routines at the user interface level for
 using the message expansion system. The first, RMMESSG, is
 used from within the program emitting a message to produce a
 CFM from a CFM prototype and the data referenced by it. The
 second is RMMSGEXP, which is used to produce an EFM from an
 EFM prototype and a CFM.

 Routine: RMMESSG

 Location: pseudo-register vector

 Call Type: S(5)

 Purpose: To generate a CFM.

 Input parameters: 1 address of CFM prototype.
 2 4 character module ID.
 3 message route descriptor.
 4 message reference number.
 5 module invocation ID.

 Return values: none

 Return codes: 0 O.K.

 Description:

 A message header is generated by this routine from the
 parameters and a store clock (STCK) value. Then the CFM
 prototype is expanded into packets via the system message
 routine MSGCC, and the subtasking monitor service RMMSG is
 invoked to pass the message to the current message on-unit.

 DSPs and the DSP Interface 32

 Routine: RMMSGEXP

 Location: pseudo-register vector

 Call Type: R(4,0)

 Purpose: To generate and output an Expanded Form Message.

 Input parameters: 1 address of CFM.
 2 address of output subroutine.
 3 severity filter.
 4 verbosity filter.

 Return values: none

 Return codes: 0 O.K.
 4 message was and end-of-file
 message.
 8 EFM prototype not defined for the
 message number.

 Description:

 This routine will expand the CFM and EFM prototype from one of
 the EFM prototype tables into an EFM, and output it to the given
 subroutine, if the severity of the message from the EFM
 prototype table is greater than the severity filter.

 This routine just selects the appropriate EFM prototype tables
 and calls MSGEXP.

 DSPs and the DSP Interface 33

 Routine: MSGEXP

 Location: DSPLCS

 Call Type: s(5)

 Purpose: Low level routine to generate and output an Expanded
 Form Message.

 Input parameters: 1 address of CFM.
 2 address of output subroutine.
 3 message severity filter.
 4 message verbosity filter.
 5 address of optional and default
 EFM prototype tables.

 Return values: none

 Return codes: 0 O.K.
 4 no message found for given message
 number.
 8 internal error.

 Description:

 This routine will expand the CFM and and EFM prototype from
 either the optional or default table, and output it to the given
 subroutine, if the severity of the message from the EFM
 prototype table is greater than the severity filter.

 DSPs and the DSP Interface 34

 Routine: CFMVALUE

 Location: DSPLCS

 Call Type: R(2,2)

 Purpose: To return a particular value from a CFM.

 Input parameters: 1 address of the keyword with
 trailing blank.
 2 address of the CFM.

 Return values: 1 length of the value.
 2 address of the value.

 Return codes: 0 O.K.
 4 keyword not found.
 8 invalid parameter.

 Description:

 This routine searchs the given CFM for the packet containing the
 given keyword, and returns the address and length of the
 associated value.

 DSPs and the DSP Interface 35

 Routine: DISPLAY_CFM

 Location: internal

 Call Type: R(2,0)

 Purpose: To output a CFM for RMMSGEXP in readable format when
 the corresponding EFM prototype does not exist.

 Input parameters: 1 address of CFM.
 2 address of output subroutine.

 Return values: none

 Return codes: 0 O.K.

 Description:

 This routine is used to get the message out in some form when
 the EFM prototype is not defined.

 DSPs and the DSP Interface 36

 Routine: PRINT

 Location: internal

 Call Type: R(2,1)

 Purpose: To make sure MSG routine’s buffer does not overflow for
 DISPLAY_CFM.

 Input parameters: 1 address null message.
 2 address MSG routine buffer control
 block.

 Return values: 1 address of null message.

 Return codes: 0 O.K.

 DSPs and the DSP Interface 37

 Routine: MSGINIT

 Location: internal

 Call Type: R(3,0)

 Purpose: To build a message operand table for MSGEXP.

 Input parameters: 1 address of operand table.
 2 length of opernad table.
 3 address of the CFM.

 Return values: none - operand table filled in.

 Return codes: 0 O.K.
 4 table overflow.
 8 invalid CFM.

 Description:

 This routine builds the operand table which is used by MSGSCON
 to get the value for a given keyword.

 DSPs and the DSP Interface 38

 Routine: EFMFIND

 Location: internal

 Call Type: R(3,2)

 Purpose: To find the EFM prototype in the EFM prototype table.

 Input parameters: 1 address table directory.
 2 message number.
 3 verbosity filter.

 Return values: 1 address of the EFM prototype.
 2 message severity.

 Return codes: 0 O.K.
 4 message number is valid, but
 verbosity too high.
 8 no EFM prototype for the message
 number.

 Description:

 When the directory contains multiple messages with the same
 number, the address returned will be that of the message with
 the highest verbosity less than or equal to the given filter
 value. When no message is found whose verbosity is acceptable
 to the filter, EFMFIND fails with a return code of 4.

 DSPs and the DSP Interface 39

 Routine: MSGSCON

 Location: internal

 Call Type: R(2,1)

 Purpose: To evaluate EFM operands.

 Input parameters: 1 address of EFM operand.
 2 address of CFM operand table.

 Return values: 1 address of the operand value.

 Return codes: 0 O.K.
 4 operand not in table.

 Description:

 MSGCC calls the routine instead of its standard routine to
 evaluated S-type constants.

 DSPs and the DSP Interface 40

 Routine: MSGOPND

 Location: internal

 Call Type: R(3,2)

 Purpose: To find the value for a given name in the CFM operand
 table.

 Input parameters: 1 address of CFM operand table.
 2 address of opernad name.
 3 length of opernad name.

 Return values: 1 address of value.
 2 length of value.

 Return codes: 0 O.K.
 4 opernamd is not in the table.

 Description:

 This routine is called by MSGSCON to search the operand table
 after it has extracted the operand name.

 DSPs and the DSP Interface 41

 8. THE PRINTER CARRIAGE CONTROL ROUTINES ___ _______ ________ _______ ________

 The printer carriage control routines are a collection of
 routines designed to handle output to a line printer device,
 with either machine or logical carriage control or a mixture
 of both. The routines produce an optimal list of CCW
 operations (for speed) for a given carriage control tape
 definition, and do page and line accounting.

 These routines are going to require more work in order to
 make them more flexible. Currently they are table driven,
 but the tables are selected solely by device type. Things
 like carriage control tape, lines per page, page width etc.
 are not easily changable, or not changable at all.

 DSPs and the DSP Interface 42

 Routine: CCINIT

 Location: DSPLCS

 Call Type: S(5,1)

 Purpose: To initialize an invocation of the CC routines.

 Input parameters: 1 address of 8 character device
 type.
 2 address of output subroutine.
 3 a parameter for the output
 subroutine.
 4 address of an accounting routine.
 5 a parameter for accounting
 routine.

 Return values: 1 address of Printer Control Block
 (PCB).

 Return codes: 0 O.K.
 8 invalid type.
 12 external error (get space).

 Description:

 This routine allocates and initializes a PCB for a printer of
 the given type.

 DSPs and the DSP Interface 43

 Routine: CCOPEN

 Location: DSPLCS

 Call Type: R(1,0)

 Purpose: To open an invocation of the CC routines.

 Input parameters: 1 address of the PCB.

 Return values: none

 Return codes: 0 O.K.
 8 parameter error.
 12 external error (unit check).
 16 internal error (accounting).
 20 wait interrupted.

 Description:

 This resets various fields to the initial values and outputs a
 page skip so that things start out at a known place.

 DSPs and the DSP Interface 44

 Routine: CCWRITE

 Location: DSPLCS

 Call Type: R(4,0)

 Purpose: To write a line on the printer.

 Input parameters: 1 address of PCB.
 2 address of line with carriage
 control.
 3 length of the line.
 4 address of modifier word. Only
 @MCC, @CC, @NOCC are checked.

 Return values: none

 Return codes: 0 O.K.
 4 page limit exceeded.
 8 parameter error.
 12 external error (unit check).
 16 internal error (accounting).
 20 wait interrupted.

 Description:

 This routine interprets the carriage control, and calls the
 output routine if necessary. There may not be a one to one
 correspondence between calls to CCWRITE and calls to the output
 subroutine. CCWRITE will in general buffer a line so that
 machine carriage control on the next line may be interpreted
 correctly.

 When the output subroutine is called, it is called as an S-type
 routine as follows:

 Input parameters: 1 line to print.
 2 halfword length of line.
 3 output routine parameter given to
 CCINIT.
 4 CCW operation code to use.
 5 flag, 0 - normal call, 1 - flush
 buffers.

 When the accounting routine is called, it is called as an R-type
 routine as follows:

 Input parameters: 1 accounting routine parameter given
 to CCINIT.
 2 accounting item. 2 - pages, 3 -
 lines.
 3 value of increment.
 4 flag, #TRUE - increment, #FALSE to
 check maximum.

 DSPs and the DSP Interface 45

 Routine: CCCONT

 Location: DSPLCS

 Call Type: R(3,0)

 Purpose: To control some things.

 Input parameters: 1 address of PCB.
 2 address of control command.
 3 length of control command.

 Return values: none

 Return codes: 0 O.K.
 8 parameter error.
 12 external error (unit check).

 Description:

 Currently the following control commands are accepted:

 FLUSH - force CCRTNS to flush buffers.

 CCTAPE=hexaddress - change the carriage control tape definition
 to that at hexaddress. See the PTRTBLS assembly for
 details.

 DEVICETYPE=Ý1403|PTRX¨ - change the device type. This currently
 only used to change between the different modes of the
 printronix printers. These printers can emulate a 1403,
 or can work in plot mode where the lines per page
 increases by a factor of 12.

 DSPs and the DSP Interface 46

 Routine: CCCLOSE

 Location: DSPLCS

 Call Type: R(1,0)

 Purpose: To close an invocation of the CC routines.

 Input parameters: 1 address of PCB.

 Return values: none

 Return codes: 0 O.K.
 8 parameter error.
 12 external error (unit check).
 16 internal error (accounting).
 20 wait interrupted.

 Description:

 This will cause all buffered lines to be emitted from the CC
 routines and will cause the output subroutine to be called with
 a "flush" indication.

 DSPs and the DSP Interface 47

 Routine: CCRELE

 Location: DSPLCS

 Call Type: R(1,0)

 Purpose: To terminate an invocation of the CC routines.

 Input parameters: 1 address of PCB.

 Return values: none

 Return codes: 0 O.K.

 Return code: 8 parameter error.
 12 external error (free space).

 Description:

 This routine releases the PCB.

 DSPs and the DSP Interface 48

 Routine: MCCRTN

 Location: internal

 Call Type: R(3,0)

 Purpose: To handle lines with machine carriage control.

 Input parameters: 1 address of PCB.
 2 address of line with carriage
 control.
 3 length of the line.

 Return values: none

 Return codes: 0 O.K.
 4 page limit exceeded.
 8 parameter error.
 12 external error (unit check).
 16 internal error (accounting).
 20 wait interrupted.

 Description:

 This is an internal routine to handle lines with machine
 carriage control.

 DSPs and the DSP Interface 49

 Routine: LCCRTN

 Location: internal

 Call Type: R(3,0)

 Purpose: To handle lines with logical carriage control.

 Input parameters: 1 address of PCB.
 2 address of line with carriage
 control.
 3 length of the line.
 4 address of modifier word. Only
 @CC and @NOCC are checked.

 Return values: none

 Return codes: 0 O.K.
 4 page limit exceeded.
 8 parameter error.
 12 external error (unit check).
 16 internal error (accounting).
 20 wait interrupted.

 Description:

 This is an internal routine to handle lines with logical
 carriage control.

 DSPs and the DSP Interface 50

 9. THE PLOT ACCOUNTING ROUTINES ___ ____ __________ ________

 The Plot Accounting (PAC) routines are a collection of
 routines that decode the data lines from a plotfile encoded
 using the UBC-extended University of Michigan plotfile
 format. Although the name of these routines implies that
 their primary purpose is to perform accounting, they are in
 fact the only routines that actually understand the format
 used in MTS plotfiles, decoding it into plotter moves, draws,
 and pen changes.

 The PAC routines are called both by the spooling and
 unspooling plot DSPs to interpret plot data lines. The
 spooling DSP calls the PAC routines to decode the plotfile
 for accounting purposes only - the lines that are spooled are
 the original lines, intact. The unspooling DSP then has to
 use the PAC routines to decode the plotfile again, to drive
 the plotter.

 The PAC initialization routine expects a coordinate output
 routine, a pen change routine, an accounting routine, and
 associated control blocks to be passed to it. For the
 spooling phase, a null coordinate output routine, pen change
 routine, and associated control block are given; for the
 unspooling phase, a null accounting routine and control block
 are passed. When proper RM accounting is implemented (i.e.
 charges are made at unspooling time, rather than during the
 spooling phase), the unspooler will give the PAC routines an
 accounting routine and control block as well.

 During the processing of a plotfile, the PAC routines will
 call the supplied routines, if available, with each pen
 change and coordinate point that is moved or drawn to; the
 associated control block that is given will be passed along
 in the call. Currently, the accouting routine called during
 spooling is the Ctlacc routine in the "shared" control
 routines (CTL routines) module, whereas the coordinate output
 and pen change routines are entry points to drive the plotter
 in the PLTDSP.

 Note that the alphabet file accessed by the PAC routines is
 permitted READ PKEY=*RMGR. This means that the spooling DSP
 must perform a Pushpkey/Poppkey operation for each call to a
 PAC routine.

 DSPs and the DSP Interface 51

 Routine: PACINIT

 Location: DSPLCS

 Call Type: S(6,1)

 Purpose: To initialize an invocation of the PAC routines.

 Input parameters: 1 address of 8 character device type
 2 address of coordinate output
 routine
 3 address of pen change routine
 4 address of control block for
 coordinate/pen change routines
 5 address of an accounting routine
 6 address of control block for the
 accounting routine

 Return values: 1 address of PAC control block

 Return codes: 0 O.K.
 12 space acquisition or alphabet file
 error.

 Description:

 This routine allocates and initializes a control block for the
 PAC routines. It also gets and sets up the alphabet file used
 to read font data from, and initializes an invocation of the
 symbol/dashed line expansion module.

 DSPs and the DSP Interface 52

 Routine: PACOPEN

 Location: DSPLCS

 Call Type: R(1,0)

 Purpose: To open an invocation of the PAC routines.

 Input parameters: 1 address of PAC control block

 Return values: none

 Return codes: 0 O.K.

 Description:

 This routine resets various fields to initial values.

 DSPs and the DSP Interface 53

 Routine: PACWRITE

 Location: DSPLCS

 Call Type: S(5,1)

 Purpose: To process a single plotfile data line.

 Input parameters: 1 address of PAC control block
 2 address of data
 3 address of data length
 4 address of sequence check switch
 5 address of account usage switch

 Return values: 1 result code

 Return codes: 0 O.K.
 4 notify code (see result code)
 8 error (see result code)
 12 external error (see result code)
 20 wait aborted

 Description:

 This routine ensures that the length of the data line is valid,
 and then calls one of several subsidiary routines to decode the
 data, depending on the record type contained in the line.

 The sequence check switch indicates whether or not a check
 should be performed to ensure that the record being written is
 not out of sequence, e.g. to make sure that a PBGN record is
 passed before a PCOD record. Currently such checks are done
 only during the spooling phase with the user’s plotfile proper,
 as there are many extra records generated by the plot processor
 during unspooling.

 The accounting switch indicates whether or not the current
 record is to be accounted for; things like headers, trailers,
 and frame numbers are not charged to the user.

 The result code returned is described by the following Plus
 type, contained in Copy:Rmgr*Sql:

 DSPs and the DSP Interface 54

 type Plotacc_Result_Type is (
 /* rc 0 */
 Plotacc_Ok,
 /* rc 4 */
 Plotacc_Start_Frame, Plotacc_End_Of_Frame,
 Plotacc_Pen_Change, Plotacc_Pen_Position,
 /* rc 8 */
 Plotacc_Missing_Pbgn, Plotacc_Missing_Pend,
 Plotacc_Illegal_Scale_Factor, Plotacc_Invalid_Coordinate,
 Plotacc_Invalid_Pcod_Length, Plotacc_Unsupported_Colour,
 Plotacc_Psalph_Parm_Error, Plotacc_Bad_Length,
 Plotacc_Unknown_Record,
 /* rc 12 */
 Plotacc_Plottime_Exceeded, Plotacc_Plotpaper_Exceeded,
 Plotacc_Plotpens_Exceeded, Plotacc_Other_Error,
 /* rc 20 */
 Plotacc_Wait_Aborted);

 DSPs and the DSP Interface 55

 Routine: PACCNTRL

 Location: DSPLCS

 Call Type: R(3,0)

 Purpose: To perform control operations.

 Input parameters: 1 address of PAC control block
 2 address of control command
 3 control command’s length

 Return values: none

 Return codes: 0 O.K.
 4 invalid control command

 Description:

 The following control commands are currently accepted:

 SCALE - Gives the scale factor to be applied to subsequent
 coordinates, i.e. all coordinates will be multiplied
 by this number.

 RESET_ALPHABET - Gives the name of the alphabet that is to
 become the current alphabet. If not already defined,
 the given alphabet will be read in from the alphabet
 file.

 SUPRESS_PENS - This causes all further pen changes to be
 ignored. This option is used when monochrome jobs are
 being plotted.

 DSPs and the DSP Interface 56

 Routine: PACSENSE

 Location: DSPLCS

 Call Type: S(6,0)

 Purpose: To have the PAC routines return information.

 Input parameters: 1 address of PAC control block
 2 address of sense command line
 3 address of sense command’s length
 4 address of region to return
 information in
 5 address of length of information
 returned
 6 address of maximum length of
 returned information allowed

 Return values: none

 Return codes: 0 O.K.
 4 requested information not found.

 Description:

 The following sense requests are currently accepted:

 SCALE - Returns the current scaling factor being applied to
 plot coordinates.

 CLOSING_VALUES - Returns some useful values that the spooling
 DSP needs to set the papersize, pentype, and frames
 attributes of a job. The pen down distance is also
 returned to determine if the the job is an "empty" one,
 i.e. to determine if the job should be cancelled.

 RIGHT_MARGIN - Returns the right margin value off of the last
 PEND plot record processed.

 DSPs and the DSP Interface 57

 Routine: PACCLOSE

 Location: DSPLCS

 Call Type: R(2,0)

 Purpose: To close an invocation of the PAC routines.

 Input parameters: 1 address of PAC control block
 2 address of returned closing
 message string

 Return values: none

 Return codes: 0 O.K.
 4 error - missing PEND record

 Description:

 This will release most alphabet-related storage, and possibly
 build a "closing message" suitable for sending to the user after
 spooling a plot.

 A return code of 4 occurs only during spooling, to indicate that
 the last record processed was not a PEND record. If necessary,
 the calling routine may generate one, calling PACWRITE with it,
 and then calling this routine again.

 DSPs and the DSP Interface 58

 Routine: PACREL

 Location: DSPLCS

 Call Type: R(1,0)

 Purpose: To terminate an invocation of the PAC routines.

 Input parameters: 1 address of PAC control block

 Return values: none

 Return codes: 0 O.K.

 Description:

 This routine releases any remaining alphabet storage, shuts down
 the alphabet file, closes the symbol/dashed line expansion
 module, and deallocates the PAC control block.

 DSPs and the DSP Interface 59

 Routine: PAC_xxxx

 Location: internal

 Call Type: R(3,1)

 Purpose: To interpret plotfile records.

 Input parameters: 1 address of plot record data
 2 address of PAC control block
 3 sequence check switch

 Return values: 1 result code (see PACWRITE
 description for details)

 Return codes: 0 not used.

 Description:

 These routines are the actual record decoding routines, called
 by the PACWRITE entry. Each routine interprets a single
 plotfile record type, and takes care of calling the
 coordinate/pen/accounting routines with each pen change or
 coordinate point, when necessary.

 The entry points are PAC_PBGN, PAC_PEND, PAC_PCOD, PAC_PSYM,
 PAC_PPEN, PAC_PALP, PAC_PDH1, and PAC_PDH2.

 The PAC_PPEN routine may call the pen selection routine and/or
 the accounting routine when a different pen from the current one
 is requested. The pen selection routine is called as an R-type
 routine as follows:

 Input parameters: 1 pen number
 2 address of the output routine
 control block

 When the accounting routine is called, it is called as an
 Rmacctng_Type, described in the Plus library Copy:Rmgr*Sql.

 DSPs and the DSP Interface 60

 Routine: PAC_ACCI, PAC_ACC, PAC_ACCT

 Location: internal

 Call Type: R(1,0), R(4,0), R(1,1)

 Purpose: To perform coordinate accounting for one record.

 Description:

 PAC_ACCI, PAC_ACC, and PAC_ACCT are initialization, accounting,
 and termination routines for record-level coordinate accounting.
 During PCOD, PSYM, and PDH2 record processing, these accounting
 routines are called for each coordinate processed, to maintain
 distance travelled measurements, pen up and down motion counts,
 and maximum X and Y values for that one record. When processing
 for that record is finished, the termination entry PAC_ACCT
 updates the global values with the values from the record just
 processed.

 A by-product of the PAC_ACC routine is to call the output
 subroutine and/or the accounting routine with the coordinate
 pair it just received. When the coordinate output routine is
 called, it is called as an R-type routine as follows:

 Input parameters: 1 X coordinate
 2 Y coordinate
 3 pen motion (move or draw)
 4 address of the output routine
 control block

 When the accounting routine is called, it is called as an
 Rmacctng_Type, described in the Plus library Copy:Rmgr*Sql.

 DSPs and the DSP Interface 61

 Routine: PACAINIT, PACAFREE, PACSYM, PACDSHPR, PACDSH

 Location: internal

 Call Type:

 Purpose: To generate dashed lines and symbols.

 Description:

 This set of routines comprise the dashed line and symbol
 expansion module; the routines have been written in Assembler
 due to their high floating-point instruction content.

 PACSYM will, given a character string, generate the moves and
 draws necessary to plot the string in whatever font is passed to
 it; PACDSH will generate a dashed line given two endpoints, and
 a description of what the dashed line should look like (in the
 form dash1, space1, dash2, space2, sent via the PACDSHPR
 routine).

 Both routines will call an output routine with each coordinate
 they generate; this output routine, together with a control
 block, is passed to the expansion module during initialization
 with the PACAINIT routine. As it turns out, the output routine
 is the PAC_ACC entry point in the Plus portion of the plot
 accounting routines.

 PACAFREE is called to release storage acquired for expansion
 purposes. The general calling sequence is therefore of the
 form:

 PACAINIT
 .
 PACSYM or PACDSHPR
 PACDSH
 .
 .
 (possibly more calls)
 .
 .
 PACAFREE

 DSPs and the DSP Interface 62

 10. CHARACTERISTICS OF SOME DSPS _______________ __ ____ ____

 DSP name: File DSP

 Transfer vector name: FILEDSP

 DSP type(s): FILE, SPOOL

 Maximum I/O length: 32767

 Description:

 The file DSP is an interface to the file system. It supports
 both line and sequential files. The file DSP supports indexed
 operations on both types of files, but for sequential files, the
 application must keep track to the "line number" for the indexed
 operations. the "line number" for sequential files is the
 "NOTE" information for the record.

 The FDINAME accepted by the file DSP, is either a normal file
 name in internal form (between 5 and 16 characters long) or an
 extended file name. The extended file name is a 16 character
 file name (padded with blanks if necessary) followed by an 8
 character catalog pointer. The total name length in this case
 must be exactly 24 characters.

 The file DSP accepts the following access codes:

 X’00000001’ - read access.
 X’00000002’ - write expand access.
 X’00000004’ - write change access.
 X’00000006’ - read and write change access.
 X’0000003F’ - unlimited access

 Additionally, the following may be specified with the above:

 X’00000010’ - destroy access.
 X’00000020’ - permit access.

 The access code is checked against the permitted access to the
 file, is used to determine how the file should be locked, and is
 used for checking on the validity of subsequent operations.

 The file DSP accepts the following control commands:

 EMPTY - causes the file to be emptied, the line pointer is
 set back to the beginning.

 FLUSH - causes all current buffers to be written.

 REWIND - positions the line pointer back at the beginning of
 the file.

 POINT=nnnn - causes the current line pointer to be set to
 nnnn.

 DSPs and the DSP Interface 63

 CURRENTLINE=nnnn - same as POINT.

 SIZE=ppp - sets the size of the file to ppp pages.

 MAXSIZE=ppp - sets the maximum size of the file to ppp pages.

 INCREMENT=nnn - sets the line number increment to nnn. The
 default is 1.

 APPEND - set the line pointer just beyond last line in file.

 The file DSP accepts the following sense commands:

 CURRENTLINE - returns the current line pointer as a four byte
 binary number.

 LASTREAD - returns the internal line number of the last line
 read as a four byte binary number.

 LASTWRITE - returns the internal line number of the last line
 written as a four byte binary number.

 SIZE - returns the size of the file in pages as a four byte
 binary number.

 MAXSIZE - returns the current maximum size of the file in
 pages as a four byte binary number.

 LINES - returns the current number of lines in the file as a
 four byte binary number.

 FIRSTLINE - returns the internal line number of the first
 line in the file as a four byte binary number.

 LASTLINE - returns the internal line number of the last line
 in the file as a four byte binary number.

 MAXLINE - returns the length of the longest line in the file
 as a four byte binary number.

 INCREMENT - returns the current line number increment as a
 four byte binary number.

 The I/O modifiers that have meaning to the file DSP are
 @INDEXED, @SEQUENTIAL, @FWD, @BKWD, @NOTIFY.

 DSPs and the DSP Interface 64

 DSP name: Printer DSP

 Transfer vector name: PTRDSP

 DSP type(s): 1403PTR,3203PTR,1443PTR,9700PTR

 Maximum I/O length: 133

 Description:

 The printer DSP supports several types of line printers.
 Current the 1403, 1443, and 3203 are supported. The unit check
 routines do not support 3211 printers at the moment.

 The FDINAME accepted by the printer DSP is a 4 character UMMPS
 device name.

 The access code is not used for the printer DSP, and should be
 X’00000000’.

 The printer DSP accepts the following control commands:

 FLUSH - causes all buffered lines to be written.

 PN - causes all lines to be translated for a PN print train.

 TN - causes all lines to be translated for a TN print train.

 ALA - causes all lines to be translated for an ALA print
 train.

 UCB - causes all lines to be translated for the UBC 9700
 character set.

 DEFTRAN - cause all lines to be translated according to the
 default (which is the UBC 9700 character set at UBC).

 NOTRAN - causes no translation to be done on the data lines.

 TRUNCATE=nn - causes lines to be truncated at nn characters.
 This us useful for 9700s and devices that choke or
 complain about long lines.

 - CCTAPE=cctapename - specifies the name of the carriage
 control tape to use for carriage control optimization
 (and accounting).

 CANCEL - cause the current CCW chain if ant to be terminated,
 and all buffer lines to be discarded.

 SKIP - causes output to be supressed, but accounting etc to
 be continued. All actions except output are continued.

 NOSKIP - enables output again after a SKIP command had
 disabled it.

 DSPs and the DSP Interface 65

 The printer DSP accepts the following sense commands:

 POSITION - returns position of the last line written on the
 page as a four byte binary number.

 The I/O modifiers that have meaning to printer DSP are @CC,
 @NOCC, @MCC, @BINARY, @NOTIFY.

 Lines written @BINARY are not translated.

 A notify code of 12 is returned for the first line on a new
 page. If the @NOTIFY modifier is set, this also causes a return
 code of 4 (the notify return code). This allows page counting
 to be done easily by the caller of the DSR. The psuedo register
 vector accounting routine RMACCTNG is also called for page and
 line accounting.

 DSPs and the DSP Interface 66

 DSP name: Plotter DSP

 Transfer vector name: PLTDSP

 DSP type(s): PLOTTER

 Maximum I/O length: 32767

 Description:

 The plotter DSP supports the two Houston Instruments plotters at
 UBC. The plotter DSP uses the FECPDSP to send data through the
 UBC Message Multiplexor to the front end device; since the
 intertask DSP is used in the communication path, this DSP must
 run under the subtasking monitor.

 The FDINAME accepted by the plotter DSP is a 4 character Front
 End Processor device name.

 The access code is not used for the plotter DSP, and should be
 X’00000000’.

 Because the plotter DSP accepts many control commands that
 include binary and floating-point data, a variant Plus record
 type has been defined to make things easier, as follows (see the
 relevant library members in Copy:Rmgr*Sql for more detail):

 type Pltdsp_Control_Type is
 record
 variant Pct_Id of (Pen_Id, Reset_Id, Scale_Id,
 Reset_Alphabet_Id, Suppress_Pens_Id, Accounting_Id,
 Setup_Id, Speed_Id, Transmit_Id, Flush_Id, Abort_Id,
 Cancel_Id) from
 case Pen_Id:
 Pct_Pen_Position is Positive_Integer,
 Pct_Pen_Colour is Plot_Pentype_Type
 case Reset_Id:
 Pct_Blankspace is Non_Negative_Short_Integer
 case Scale_Id:
 Pct_Scale_Factor is Short_Real
 case Reset_Alphabet_Id:
 Pct_Alphabet_Name is Plot_Alphabet_Name_Type
 case Accounting_Id:
 Pct_Accounting_Switch is Boolean
 case Setup_Id:
 Pct_Papertype is Plot_Papertype_Type,
 Pct_Papersize is Plot_Papersize_Type,
 Pct_Maxpens is Positive_Short_Integer
 case Speed_Id:
 Pct_Speed is Positive_Integer
 case Transmit_Id:
 Pct_Onoff is Boolean
 case Suppress_Pens_Id, Flush_Id, Abort_Id, Cancel_Id:
 /* No parameters for these options */
 end;

 DSPs and the DSP Interface 67

 Plot processor or Pltling (task RM.PLT) functions that require
 plotter DSP control requests are all mapped from their external
 form into the above variant record, by the Pltling.

 The Pltdsp accepts the following control options:

 Pen_Id - Informs the DSP that a certain pen type is mounted
 in a given position of the plotter’s pen holder.

 Reset_Id - Causes the DSP to reorigin the pen to Y=0, and an
 X value that is an even number of inches or centimetres
 beyond the value that is passed to the DSP.

 Scale_Id - Gives the scale factor to be applied to the
 current plot. The DSP just passes this information
 along to the plot accounting routines.

 Reset_Alphabet_Id - Tells the DSP to make the specified
 alphabet the current one. The DSP just passes this
 command on to the plot accounting routines.

 Accounting_Id - Causes the DSP to turn accounting on or off
 for further processing.

 Setup_Id - Gives the DSP its initial operating parameters:
 what paper type, paper size, and number of pens its
 plotter has.

 Speed_Id - Tells the DSP to drive the plotter at the
 specified speed, 1<=n<=9, 9=default speed=fastest
 speed.

 Transmit_Id - Tells the DSP to turn coordinate output on or
 off for further processing. Transmission of coordinate
 data is turned off when the Pltling is reading through
 a plot in search of a given frame.

 Suppress_Pens_Id - Tells the DSP to ignore any pen changes
 following this command; the DSP just passes this
 command along to the plot accounting routines. This
 option is used for plots which may originally have been
 multicoloured jobs, but were forced to be plotted as
 monochrome jobs by the user.

 Flush_Id - Causes the DSP to flush any buffered plot codes it
 has.

 Abort_Id - Causes the DSP to throw away any buffered plot
 codes it has.

 Cancel_Id - Informs the DSP that the job it is processing has
 been cancelled. Any buffered plot codes are *not*
 thrown away, since the position of the plotter pen
 would be lost.

 DSPs and the DSP Interface 68

 The plotter DSP accepts the following sense commands:

 PEN_CONFIGURATION - Requests that the DSP return the current
 contents of the plotter’s pen holder, as well as the
 current pen (or rather, its position), and a pen type
 that the DSP is waiting for, if any.

 SCALE - Requests the DSP to return the current scaling factor
 being applied to plots. This information is retrieved
 from the plot accounting routines.

 The plotter DSP does not recognize any I/O modifiers, as all
 records are written @BINARY to the FECPDSP.

 The plot accounting routines, described elsewhere in this
 document, are used to decode the plot lines read from a
 spoolfile.

 DSPs and the DSP Interface 69

 DSP name: Intertask DSP

 Transfer vector name: ITSKDSP

 DSP type(s): INTRTASK

 Maximum I/O length: 4074

 Description:

 The intertask DSP is an interface to the UMMPS intertask
 facility.

 The FDINAME accepted by the intertask DSP must be 12 characters
 long, and is composed of a 4 character arbitrary identifier for
 the network node to be created, followed by an 8 character
 network name. The intertask DSP creates the specified node on
 the specified network, creating the network if it does not
 already exist.

 The intertask DSP uses subtasking, and must therefore run under
 the subtasking monitor.

 The intertask DSP accepts the following access codes:

 X’00000080’ - receive access.
 X’00000002’ - send access access.
 X’00000004’ - notify access.
 Or any combination of the above.

 In addition, X’00000000’, is taken as send and receive access.

 The intertask DSP takes and returns an intertask header as the
 first 20 characters of each buffer. The application must fill
 in values for the arbid, and task number when sending a message.
 These may be set to zero to indicate that all arbids and/or all
 tasks on the network are to receive the message. The format of
 the header is as follows:

 item length use

 LINK 4 not used, for use by the caller.
 SEQ# 4 sequence number of message received.
 ARBID 4 arbitrary id of sender or receiver.
 TIMEOUT 4 message time out value (not used).
 TASK# 2 task number of sender or receiver.
 TEXTLEN 2 length of text of message received.

 The intertask DSP accepts the following control commands:

 NOTIFICATION - causes notify access to be added to the node.

 RECEIVE - causes receive access to be added to the node.

 SEND - causes send access to be added to the node.

 DSPs and the DSP Interface 70

 NOTIFICATIONONLY - causes the node access to be changed to
 just notification.

 RECEIVEONLY - causes the node access to be changed to just
 receive.

 SENDONLY - causes the node access to be changed to just send.

 CLEAR - causes any buffered input messages to be discarded.

 The intertask DSP accepts no sense commands.

 The I/O modifier that has meaning to the intertask DSP is
 @NOTIFY.

 DSPs and the DSP Interface 71

 DSP name: Intertask Line DSP

 Transfer vector name: ITLNDSP

 DSP type(s): ITLINE

 Maximum I/O length: 4074

 Description:

 The intertask line DSP is another interface to the UMMPS
 intertask facility. This DSP makes a connection between 2
 nodes.

 The FDINAME accepted by the intertask DSP must be 18 characters
 long, and is composed of a 4 character arbitrary identifier for
 the network node to be created, followed by an 8 character
 network name, followed by a 4 character arbid of the node on the
 other end of the connection, followed by a 2 character task
 number for that node. The DSP creates the node on the specified
 network, creating the network if it does not already exist.
 Messages received from nodes other than the one specified are
 ignored, and all messages are sent to the node specified. The
 buffer in this case does not contain an intertask header.

 The intertask line DSP uses subtasking, and must therefore run
 under the subtasking monitor.

 The intertask line DSP accepts the following access codes:

 X’00000080’ - receive access.
 X’00000002’ - send access access.
 Or a combination of the above.

 In addition, X’00000000’, is taken as send and receive access.

 The intertask line DSP accepts the following control commands:

 RECEIVE - causes receive access to be added to the node.

 SEND - causes send access to be added to the node.

 RECEIVEONLY - causes the node access to be changed to just
 receive.

 SENDONLY - causes the node access to be changed to just send.

 CLEAR - causes any buffered input messages to be discarded.

 The intertask line DSP accepts no sense commands.

 The I/O modifier that has meaning to the intertask line DSP is

 DSPs and the DSP Interface 72

 @NOTIFY.

 DSPs and the DSP Interface 73

 DSP name: Printronix DSP

 Transfer vector name: PTXDSP

 DSP type(s): PTRXPTR

 Maximum I/O length: 133

 Description:

 The Printronix DSP supports the Ascii Printronix printers at
 UBC. The Printronix DSP calls on the Front End Communication
 Protocol DSP to send data through the UBC Message Multiplexor to
 the front end device.

 The FDINAME accepted by the Printronix DSP is a 4 character
 Front End Processor device name.

 Since the intertask DSP is used in the communication path, this
 DSP must run under the subtasking monitor.

 The access code is not used for the Printronix DSP, and should
 be X’00000000’.

 The printronix DSP accepts the following control commands:

 FLUSH - causes all buffered lines to be written.

 PX - causes all lines to be translated for the printronix
 printer.

 DEFTRAN - cause all lines to be translated according to the
 default (which is the same a PX).

 NOTRAN - causes no translation to be done on the data lines.

 - CCTAPE=cctapename - specifies the name of the carriage
 control tape to use for carriage control optimization
 (and accounting).

 CANCEL - cause the current CCW chain if ant to be terminated,
 and all buffer lines to be discarded.

 SKIP - causes output to be supressed, but accounting etc to
 be continued. All actions except output are continued.

 NOSKIP - enables output again after a SKIP command had
 disabled it.

 The printronix DSP accepts the following sense commands:

 POSITION - returns position of the last line written on the
 page as a four byte binary number.

 DSPs and the DSP Interface 74

 The I/O modifiers that have meaning to Printronix DSP are @CC,
 @NOCC, @MCC, @BINARY, @NOTIFY.

 Lines written @BINARY to the Printronix DSP are taken as lines
 to be written in plot mode. No translation is done on lines
 written @BINARY.

 A notify code of 12 is returned for the first line on a new
 page. If the @NOTIFY modifier is set, this also causes a return
 code of 4 (the notify return code). This allows page counting
 to be done easily by the caller of the DSR. The psuedo register
 vector accounting routine RMACCTNG is also called for page and
 line accounting.

 DSPs and the DSP Interface 75

 DSP name: Front End Communication Protocol DSP

 Transfer vector name: FECPDSP

 DSP type(s): FECP

 Maximum I/O length: 254

 Description:

 The FECP DSP is used to communicate to devices attached to the
 UCB Front End Processors (FEPs). The Intertask DSP is used to
 send and received data to the device through the UBC message
 multiplexor. It must therefore run under the subtasking
 monitor.

 The FDINAME accepted by the FECP DSP is a 4 character FEP device
 name followed by ".FECP"

 The access code is not used for the FECP DSP, and should be
 X’00000000’.

 The FECP DSP accepts the following control commands:

 CANCEL - causes all buffered lines to be discarded.

 BLOCKING=ON_OFF - controls whether or not output lines are
 blocked before they are sent to the Message
 Multiplexor.

 The FECP DSP accepts no sense commands.

 The I/O modifiers that have meaning to FECP DSP are @NOTIFY.

 DSPs and the DSP Interface 76

 DSP name: VideoPrint DSP

 Transfer vector name: VPRTDSP

 DSP type(s): VIDEOPRT

 Maximum I/O length: 240

 Description:

 The VideoPrint DSP supports two devices: a standard videotex
 decoder and a VideoPrint 5000 camera device. Both physical
 devices are attached to a UBCnet NIM and so are accessed through
 the VTP DSP.

 Note: the status of this description is currently incomplete and
 may not accurately reflect the implementation.

 The FDINAME accepted by the VideoPrint DSP is an N character
 symbolic name found in the symbol table under <basdevt>. The
 VideoPrint DSP checks for this name in the symbol table to
 retrieve the network address of the two NIM attached devices.

 The access code is not used for the VideoPrint DSP, and should
 be X’00000000’.

 This DSP is used by the VTXLING (task RM.VTX) for despooling
 videotex jobs and has be designed to buffer the ling as much as
 possible from dealing with the actual devices. Input to the
 VideoPrint DSP consists of ’Videotex Records’ which the ling has
 no knowledge of; it simple copies them from the spool files.
 Videotex Records are generated and spooled by the *VIDEOTEX* DSP
 (VTEXDSP).

 Videotex Records are defined in the Resource Manager Plus Source
 Library. Additional definitions needed for Videotex Records may
 be found in Plus Source Libraries VTX:ROUTINES*SQL and
 VTX:INTERNAL*SQL.

 In addition to controlling two UBCnet attached devices the
 VideoPrint DSP performs the following important funtions:

 1) Interacts with the device operator over the physical
 aspects of the job: when to load film, number of frames
 to print, size of film roll loaded, etc.

 2) Manages the splitting of large jobs over multiple rolls
 of film when necessary.

 3) Generates an identifying ’header’ frame for each roll
 of film.

 In the future this DSP will also be do the despooling side of
 the MTS accounting for videotex jobs.

 DSPs and the DSP Interface 77

 The VideoPrint DSP currently does not support text control,
 commands, rather it accepts binary command records. These
 control commands can come from two sources: directly from the
 VTXLING or indirectly from the *VIDEOTEX* DSP which may imbed
 them in Videotex Records. In either case command records are
 the same. The definitions for these commands may be found in
 the Resource Manager Plus Source Library under
 VPRTDSP_Control_Types.

 Like control command records the VideoPrint DSP currently only
 supports sense command records and returns sense result records.
 The definitions for these commands and result may be found in
 the Resource Manager Plus Source Library under
 VPRTDS_Sense_Types.

 This DSP currently does not recognise any of the I/O modifiers.
 All data passed along to the VTP DSP is written @BINARY.

 DSPs and the DSP Interface 78

 A. APPENDIX - COPY SECTIONS/CONTROL BLOCKS ________ _ ____ ________________ ______

 Copy Section/Control Block Name: FDIB

 Macro Library: RMGR:RMGR*M

 File, Device or Intertask block.

 FDIB RDSECT
 *
 FDIBCBID DC CL4’FDIB’ control block id for dumps
 FDILINK DS A link to next FDIB or a(0)
 FDISPACE DS A space chain for DSP
 FDINAME DS A pointer to name of file, device,
 * or intertask node
 * (halfword count & string)
 FDITYPE DS CL8 DSP type
 FDIDSP DS A address of DSP transfer vector
 FDIFDCB DS A address of file/device control block
 FDIMODS DS XL8 modifier bits (MTS compatible)
 *
 * FDIB SWITCHES
 *
 FDIOPEN DS X true/on -> FDIB is open
 *
 FDILSTOP DS X last operation
 * is one of:
 FDILINIT EQU 0 0 = initialize
 FDILOPEN EQU 4 4 = open
 FDILREAD EQU 8 8 = read
 FDILWRIT EQU 12 12 = write
 FDILCONT EQU 16 16 = control
 FDILSENS EQU 20 20 = sense
 FDILCLOS EQU 24 24 = close
 FDILRELE EQU 28 28 = release
 *
 FDIMAXLN DS H max length for device
 FDILSTCL DS A last caller (GR14 of caller)
 FDILSTRC DS F last return code (GR15 from DSP)
 FDIACB DS A address of accounting control blk
 FDILEN EQU *-FDIB length of FDIB
 *
 RDSECT END

 DSPs and the DSP Interface 79

 Copy Section/Control Block Name: RMMSGFMT

 Macro Library: RMGR:RMGR*M

 Resource Manager message format.

 RMMSGFMT RDSECT
 *
 RMSGID DS F Globally unique message ID
 RMSGMOD DS CL4 ID of module sending message
 RMSGINV DS F Some kind of invocation ID
 RMSGTIME DS XL8 STCK value at time message sent
 RMSGREF# DS F Message reference (sequence) no.
 RMSGLEN DS H Length of following CFM.
 RMSGFMTL EQU *-RMMSGFMT Length of message header
 RMSGTEXT DS 0XL256 Start of message operands
 *
 * Each message operand is a name-value pair with the format:
 * 1. AL1(length of name)
 * 2. C’name’
 * 3. AL1(length of value)
 * 4. X’value’
 *
 * Following the last name-value pair
 * is the canonical-form message terminator X’00’ .
 *
 RDSECT END End of message

 DSPs and the DSP Interface 80

 Copy Section/Control Block Name: ITHEADER

 Macro Library: RMGR:RMGR*M

 Intertask message header.

 ITHEADER RDSECT
 *
 * This dsect describes an intertask message as received or sent
 * via the intertask DSP. the SEQ# and LEN fields have meaning
 * only for messages received. the timeout value has meaning only
 * for messages being sent, and the arbid and task# fields have
 * meaning in both cases.
 *
 ITHLINK DS A user link field
 ITHSEQ# DS F sequence number of message
 ITHARBID DS CL4 arbid of message sender/receiver
 ITHTIMEO DS F message timeout value
 ITHTASK# DS H task # of sender/receiver
 ITHLEN DS H length of message text
 ITHTEXT DS 0XL256 message text
 SPACE 2
 ITHDRLEN EQU ITHTEXT-ITHEADER length of header

 DSPs and the DSP Interface 81

 Copy Section/Control Block Name: DSPMSGEQU

 Macro Library: RMGR:RMGR*M

 Message equates for DSP level messages.

 *
 * General messages.
 *
 #MNSPCER EQU 1001001 space allocation error
 #MNSBTFL EQU 1001002 subtask creation error
 *
 * Device support program interface messages.
 *
 #DIBADPL EQU 1002001 parameter list is unaddressable
 #DIBADPA EQU 1002002 bad parameter address
 #DIBADP EQU 1002003 bad parameter
 #DIDUPL EQU 1002004 attempt to allocate duplicate FDIB
 #DINODSP EQU 1002005 DSP is not loaded
 #DIBADSQ EQU 1002006 invalid operation sequence
 *
 * DSP messages
 *
 #DSPNXER EQU 1003001 file/device non-existant/unavailable
 #DSPLKER EQU 1003002 error locking file
 #DSPLKOP EQU 1003003 error from icopen
 #DSPULKR EQU 1003004 error unlocking file
 #DSPFLSR EQU 1003005 file system error
 #DSPCTLR EQU 1003006 invalid control command
 #DSPSNSR EQU 1003007 invalid sense command
 #DSPBSYR EQU 1003008 device is busy
 #DSPPERR EQU 1003009 parameter error
 #DSPACER EQU 1003010 access code error
 *
 * Standard unit check messages
 *
 #MSUCR EQU 1004001 command reject
 #MSUIR EQU 1004002 intervention required
 #MSUIREM EQU 1004003 situation unrecoverable after ireq
 #MSUBOCK EQU 1004004 bus out check
 #MSUEQCK EQU 1004005 equipment check
 #MSUDCK EQU 1004006 data check
 #MSUUCS EQU 1004007 unusual command sequence
 #MSUOR EQU 1004008 overrun
 #MSUQER EQU 1004009 too many i/o operations (>1)
 #MSUSER EQU 1004010 invalid sense after unit check
 #MSURTY EQU 1004011 retry count exhausted error
 #MSUPCK EQU 1004012 parity check
 #MSUIREJ EQU 1004013 initial rejection of command
 #MSUIOP EQU 1004014 immediate operation error
 #MSUCHER EQU 1004015 channel error
 #MSUUC EQU 1004016 general purpose UC message

 DSPs and the DSP Interface 82

 *
 * Unique error messages from the UBC FECPDSP.
 *
 #FEPGTMSG EQU 1005001 unknown return code from GTFEPDEV
 #FEPWRMSG EQU 1005002 error message from FEP
 #FEPCMDERR EQU 1005003 unknown/unsupported command from FEP
 *
 * Unique error messages for printers
 *
 #PTRLDCK EQU 1006001 load check on printer
 #PTRLPCK EQU 1006002 line position check on printer

 Device_Support_Programs_and_the ______ _______ ________ ___ ___

 Device_Support_Program_Interface ______ _______ _______ _________

 by

 Ken Bowler

 Computing Centre

 UNIVERSITY OF BRITISH COLUMBIA
 6356 Agricultural Road
 Vancouver, B.C., Canada V6T 1W5

 April 1981

 Revised July 1982

 INDEX

 CCCLOSE, 46 RMREAD/FSTREAD, 10
 CCCONT, 45 RMSENSE, 13
 CCINIT, 42 RMTKCINF/MTTKCINF, 27
 CCOPEN, 43 RMTKINFO/MTTKINFO, 26
 CCRELE, 47 RMWRITE/FSTWRITE, 11
 CCSP, 17
 CCWRITE, 44
 CFMVALUE, 34
 CPLIST, 15
 CRWP, 16
 CVTDB, 22
 CVTHB, 23
 CVTLNRB, 24

 DISPLAY_CFM, 35
 DSPCLEAN, 25
 DSPPRVI, 18

 EFMFIND, 38

 GETPAR, 20

 KEYWORD, 21

 LCCRTN, 49

 MCCRTN, 48
 MSGEXP, 33
 MSGINIT, 37
 MSGOPND, 40
 MSGSCON, 39
 MTSDSPRV, 19

 PACACC, PACACCI, 60 _ _
 PACACCI, PACACC, 60 _ _
 PACAFREE, PACAINIT, 61
 PACAINIT, PACAFREE, 61
 PACCLOSE, 57
 PACCNTRL, 55
 PACINIT, 51
 PACOPEN, 52
 PACREL, 58
 PACSENSE, 56
 PACWRITE, 53
 PACxxxx, 59 _
 PRINT, 36

 RMCKFDIB, 14
 RMCLOSE, 9
 RMCNTRL, 12
 RMFFDIB, 7
 RMGFDIB, 6
 RMMESSG, 31
 RMMSGEXP, 32
 RMOPEN, 8

 Table_of_Contents _____ __ ________

 1. DSPS AND THEIR ENVIRONMENT1
 a. Environment1
 b. Entry Points1

 2. THE DSP INTERFACE ..3
 a. Entry Points3
 b. DSP Selection3
 c. Parameter Checking4
 d. Sequence Checking4
 e. Error Handling4
 f. Return Codes4

 3. DSP INTERFACE EXTERNAL PROCEDURES6
 RMGFDIB ..6
 RMFFDIB ..7
 RMOPEN ...8
 RMCLOSE ..9
 RMREAD/FSTREAD10
 RMWRITE/FSTWRITE11
 RMCNTRL ...12
 RMSENSE ...13
 RMCKFDIB ..14

 4. DSP INTERFACE INTERNAL PROCEEDURES15
 CPLIST ..15
 CRWP ..16
 CCSP ..17

 5. DSP SERVICE ROUTINES18
 DSPPRVI ...18
 MTSDSPRV ..19
 GETPAR ..20
 KEYWORD ...21
 CVTDB ...22
 CVTHB ...23
 CVTLNRB ...24
 DSPCLEAN ..25
 RMTKINFO/MTTKINFO26
 RMTKCINF/MTTKCINF27

 6. THE MESSAGE EXPANSION SYSTEM28
 a. Concept ..28
 b. Definition Of Terms28
 c. EFM Tables30

 7. MESSAGE EXPANSION SYSTEM ROUTINES31
 RMMESSG ...31
 RMMSGEXP ..32
 MSGEXP ..33
 CFMVALUE ..34
 DISPLAY_CFM ...35

 ii

 PRINT ...36
 MSGINIT ...37
 EFMFIND ...38
 MSGSCON ...39
 MSGOPND ...40

 8. THE PRINTER CARRIAGE CONTROL ROUTINES41
 CCINIT ..42
 CCOPEN ..43
 CCWRITE ...44
 CCCONT ..45
 CCCLOSE ...46
 CCRELE ..47
 MCCRTN ..48
 LCCRTN ..49

 9. THE PLOT ACCOUNTING ROUTINES50
 PACINIT ...51
 PACOPEN ...52
 PACWRITE ..53
 PACCNTRL ..55
 PACSENSE ..56
 PACCLOSE ..57
 PACREL ..58
 PACxxxx ...59 _
 PACACCI, PACACC, PACACCT60 _ _ _
 PACAINIT, PACAFREE, PACSYM, PACDSHPR, PACDSH61

 10. CHARACTERISTICS OF SOME DSPS62
 File DSP ..62
 Printer DSP ...64
 Plotter DSP ...66
 Intertask DSP69
 Intertask Line DSP71
 Printronix DSP73
 Front End Communication Protocol DSP75
 VideoPrint DSP76

 A. APPENDIX - COPY SECTIONS/CONTROL BLOCKS78
 FDIB ..78
 RMMSGFMT ..79
 ITHEADER ..80
 DSPMSGEQU ...81

 INDEX ..84

