
 The MTS Coding Conventions The MTS Coding Conventions

 by

 Steve Burling

 The University of Michigan
 Computing Center
 1075 Beal Avenue
 Ann Arbor, Michigan 48109-2112

 January 6, 1984

 Table of Contents Table of Contents

 I. Introduction .. 1

 II. Structure ... 2
 A. ASSEMBLY ...2
 B. ROUTINE ..2
 1. Routines ..2
 2. Subroutines2
 C. STORAGE MANAGEMENT2
 1. Global Storage3
 2. Local Storage3
 3. Other storage4
 D. NAMING CONVENTIONS4
 E. TRANSFER VECTOR4

 III. Register Usage .. 5

 IV. Linkage ... 6
 A. ENTRIES AND EXITS6
 B. PARAMETERS ...7
 C. RESULTS ..7

 V. Assembler Implementation 9
 A. SHORT LIST OF MACROS9
 B. RULES FOR USING THE MACROS10
 C. OS LINKAGE ..11
 D. DETAILED DESCRIPTIONS OF MACROS11
 ROUTINE ...12
 SUBROUTINE ..17
 RBEGIN ..18
 REND ..19
 RENTER ..20
 RCALL ...22
 RRETURN ...25
 REXIT ...26
 RSPARSET ..27
 RSPARLOC ..29
 RSECT ...30
 RSA ...31
 RDSECT ..32
 REGS ..33
 RRCTST ..34
 RPRV ..36
 RPRDEF ..37
 RTVENTRY ..39
 RPR ...40
 RPRI ..41
 RPRC ..42
 RNEXT_STACK ...43
 RPREV_STACK ...44
 RPUSH ...45
 RPOP ..46
 RPUSHSTACK ..47

 RPOPSTACK ...49
 RSET ..50
 RDISPLAY ..51
 CCPUNT ..52

 ii

 VI. Differences From Earlier Versions 53
 A. Differences between version 3 and version 253
 1. Stack overflow checking53
 2. Global Storage Switching54
 3. Replacement of trivial routines54
 4. General cleanup55
 B. Differences between version 2 and version 155
 1. Reversing the roles of R12 and R1355
 2. Removal of scratch registers55
 3. Making R11 the MTS dsect base in the MTS
 assemblies55

 VII. The Coding Conventions and the MTS assemblies 56
 A. INTERFACING MACROS56
 INDEX ...57

 The MTS Coding Conventions
 1

 I. Introduction I. Introduction

 This document describes the MTS coding conventions. These
 conventions were originally invented at UBC and published under
 the name of "Resource Manager Coding Conventions." Despite the
 specific nature of the name, the conventions actually described a
 coding system that was generally applicable to assembler
 programming. Subsequent proliferation of non-Resource-Manager
 code built according to these conventions has made them a de
 facto standard in some quarters of the MTS community.
 Accordingly, the name of the conventions was changed to delete
 the specific Resource Manager reference.

 The major goal of these conventions is to support a coding
 environment that encourages consistent style and clean
 hierarchical code structure. This is accomplished mainly by
 implementing selected concepts of modern high-level languages
 using a set of coding rules and a set of assembler macros.
 Unlike some other macro-supported coding techniques, these
 conventions concentrate on the larger code objects, such as
 global storage areas and procedures. Below the procedure level,
 local coding style is mostly left up to the programmer. Thus,
 these conventions are compatible with most sets of so-called
 "structured programming macros."

 This document describes the current version of the coding
 conventions. Differences between this version and earlier
 versions can be found in Section VI. The MTS job program now
 uses the current version, and work is underway at UM to convert
 existing uses of the "old" coding conventions to use the current
 coding conventions. The relatively small amount of additional
 support required for use inside the MTS assemblies is included in
 the MTS-specific macro library. The specific additions to the
 coding conventions for use inside MTS are described in Section
 VII.

 The ultimate goal of all this is to end up, once again, with only
 one version of the coding conventions.

 NOTE: Although most of this document is couched in terms of NOTE
 assembly language, a distinction must be made between the coding
 conventions themselves and the assembly language macros that
 provide an implementation of the coding conventions. The PLUS
 and Pascal/JB programming languages generate code that conforms
 to the coding conventions as described in this document. The GOM
 programming language generates code that conforms to a previous
 version of the coding conventions. The user of any of these
 languages need not know the finer details of the coding
 conventions, except when interfacing to programs written in
 languages that do not support them, such as FORTRAN.

 The MTS Coding Conventions
 2

 II. Structure II. Structure

 The following linkage conventions and storage rules provide a
 block-structured environment with simple variable scope rules and
 a linkage/local-store stack mechanism. Here are the concepts:

 A. ASSEMBLY A. ASSEMBLY

 An assembly consists (mainly) of one or more routines. routines

 B. ROUTINE B. ROUTINE

 A routine is a procedure. Every routine must be declared (by
 macro -- see below for its description) before it is called or
 used. Every routine definition (i.e. code) is closed -it has closed
 a definite beginning and a definite end, and all of the
 routine’s executable code lies between them. Furthermore, no
 routine definition resides inside another routine definition,
 except for subroutines which are described below. There are
 two kinds of routines, routines and subroutines. routines subroutines

 1. Routines 1. Routines

 A routine is self-addressable, callable by BALR, movable
 between assemblies, and externally callable if declared to
 be.

 2. Subroutines 2. Subroutines

 A subroutine is a routine that is attached to a particular
 routine. It is coded physically inside its parent, but
 outside the definition of any other subroutine. This is
 the exception to the nested-definition rule that we
 mentioned above. It is self-addressable. It saves
 registers, but uses the same local stack frame as its
 parent. The registers are saved in what would be the stack
 frame provided to a called routine, and the next stack
 frame pointer is updated appropriately.

 C. STORAGE MANAGEMENT C. STORAGE MANAGEMENT

 The coding conventions attempt to define a strict repertoire
 of storage types. These types are described next.

 The MTS Coding Conventions
 3

 1. Global Storage 1. Global Storage

 Global storage is storage that is global to more than one
 routine. It is pointed to by R11, which in general is left
 untouched during subroutine calls. It is possible,
 however, for a routine declaration to request a different
 global storage pointer to be loaded into R11 before it is
 called (the original R11 value is restored from the stack
 after the called routine returns).

 The global storage pointed to by R11 must always be at
 least 8 bytes long, since the first two words of this area
 are, by convention, assumed to contain a pointer to the CLS
 transfer vector and a pointer to the global stack
 descriptor, respectively.

 The management of routine global storage is left to the
 particular group of routines which use it. Many programs
 use the pseudo-register concept, which, although not ideal,
 has a few advantages over the more usual method of using a
 global DSECT. All pseudo-register references are made via
 macros. Although UMLOAD supports pseudo-register-vector
 lengths up to 16 megabytes, for efficiency the macros
 assume the length is a page or less. This limitation does
 not exist for programs written in PLUS. It is not expected
 that this limitation will ever be a serious one, since
 working storage is available elsewhere -- see #2 below --
 and since large global data structures should only be
 rooted in the storage addressed by R11, not allocated in
 it.

 For applications where multiple program loads must refer to
 the same pseudo-register-vector definition, the macros that
 declare pseudo-registers can be made to produce an UMLOAD
 LCSPR table that communicates the format of one load’s
 pseudo-register vector to a subsequent load. This
 situation will exist most commonly when a non-resident
 program calls a resident routine.

 2. Local Storage 2. Local Storage

 Storage local to routines is allocated on stacks. Stack
 storage is roughly equivalent to PL/I AUTOMATIC storage,
 but without the INITIAL option. (The effect of the INITIAL
 option is available by using the DCI macros.) Local
 storage exists only across one invocation of each routine.
 Allocation and de-allocation of storage of this same scope
 is the responsibility of the routine. Subroutines use
 their parent routines’ stack frames.

 The term "RSECT" is used to refer to the DSECT that
 describes a routine’s stack frame.

 The MTS Coding Conventions
 4

 Routine local storage that must exist across calls will
 usually be set up as a control block or blocks that are
 directly or indirectly pointed to by a parameter to the
 routine being called. Of course, for routines that have
 only one invocation per context, permanent local storage
 can be chained from global storage.

 3. Other storage 3. Other storage

 The coding conventions have no rules about storage other
 than global storage and local storage. Presumably,
 routines will get and free control blocks and other
 dynamically-allocated pieces of storage as they need to .

 D. NAMING CONVENTIONS D. NAMING CONVENTIONS

 Each routine’s name, the labels within it, and the variables
 in its RSECT should begin with a globally unique 3 character
 prefix. The default names for the RSECT, the save area within
 it, and the register area within the save area are constructed
 from the first 3 characters of the routine name, unless the
 SYMBOL_PREFIX option of the ROUTINE macro is used, q.v. This
 means, for example, that a routine named TEST will have, by
 default, an RSECT named TESRCT, which will contain a save area
 named TESSA. TESSA will have as fields within it
 TESR0...TESR15 (in that order).

 E. TRANSFER VECTOR E. TRANSFER VECTOR

 Frequently, certain routines need services whose
 implementation varies depending on who the caller is. The way
 the coding conventions support this context-dependent
 variation is by having a transfer vector. In each context,
 initialization code establishes a transfer vector that
 contains pointers to the appropriate service routines for that
 context. This transfer vector contains addresses for only
 those service routines which vary from one context to another,
 not for every routine or even every service routine. The
 transfer vector is part of the global storage, as described
 above. Each transfer vector entry is a separate
 pseudo-register, and contains the address of the routine to
 call, and the address that the called routine expects to be in
 R11 at the time it is called.

 The MTS Coding Conventions
 5

 III. Register Usage III. Register Usage

 Here is a table of how registers are used in the coding
 conventions:

 Register At call In routine At return

 R0 R-parameter Scratch Return value (or
 restored)
 R1 R-par or Scratch Return value (or
 A(S-pars) restored)
 R2 R-par Scratch Return value (or
 restored)
 R3 R-par Scratch Return value (or
 restored)
 R4-R9 Undefined Available Restored
 R10 Undefined Local base Restored
 R11 A(global storage) A(global storage) Restored
 R12 A(Caller’s stack A(Current stack Restored
 frame) frame)
 R13 A(Callee’s stack A(Next stack Restored
 frame) frame)
 R14 A(Return to Available Restored
 caller)
 R15 A(Callee) Available Return code (or
 restored)

 In the "In Routine" column of this table, certain registers are
 labeled as "Scratch" and others as "Available." The spiritual
 difference between scratch registers and available registers is
 that scratch registers should be used only for very local
 purposes whereas available registers should cater to more lofty
 and stable applications.

 Return values in Registers 0-3 are optional. If a routine has
 fewer than 4 return values, the remainder of R0-R3 at return are
 restored to their contents at the time of the call.

 The parameters and return values in R-type calls must each be
 dense register sets, i.e. register N shall not be a parameter
 register unless register N-1 is one, with a similar rule applying
 to return values.

 The MTS Coding Conventions
 6

 IV. Linkage IV. Linkage

 A. ENTRIES AND EXITS A. ENTRIES AND EXITS

 Both routines and subroutines are self-addressable,
 register-saving, BALR-called routines. Each subroutine is
 considered to exist in the code space of a containing routine.
 No more than one routine can call a given subroutine.

 Routines are of two types, INTERNAL and EXTERNAL. Both of
 these types, and subroutines, are called in the same way,
 namely:

 (R13 = A(next stack
 frame))
 L R15,A(the routine)
 BALR R14,R15

 ROUTINE entry and exit sequences are

 Entry:

 USING myrsect,R13
 STM R0,R15,mysa (save in my dsect)
 LR R10,R15
 USING me,R10 (local base)
 LR R12,R13 (A(current stack frame))
 DROP R13
 USING myrsect,R12
 LA R13,myrsectlength(,R12) stack frame)) (A(next

 Exit:

 L R0,returnvalue (perhaps)
 .
 .
 L R3,returnvalue (perhaps)
 L R15,returncode (perhaps)
 LM Rn,R14,mysa+Rn*4 (or R15)
 BR R14

 where Rn is the first register that doesn’t contain a return
 value.

 The MTS Coding Conventions
 7

 SUBROUTINE entry and exit sequences are

 Entry:

 STM R0,R15,0(R13) (save in next stack
 frame)
 LR R10,R15
 USING me,R10 (local base)
 LA R13,4*16(,R12) A(next stack frame)

 Exit:

 L R0,returnvalue (perhaps)
 .
 .
 L R3,returnvalue (perhaps)
 LA R14,4*16 (back up stack)
 SR R13,R14
 L R15,returncode (perhaps)
 LM Rn,R14,mysa+Rn*4 (or R15)
 BR R14

 where Rn is the first register that doesn’t contain a return
 value.

 Transfer-vector routines are called as follows:

 (R13 = A(next stack
 frame))
 RPR L,R15,PRNAME. (routine address)
 RPR L,R11,PRNAME+4. (its global storage)
 BALR R14,R15
 L R11,mysa+R11*4 (restore our R11)

 B. PARAMETERS B. PARAMETERS

 There are two types of routine parameters. One is standard OS
 variable-length S-form, the other is standard R-form with at
 most four parameters in registers 0-3.

 C. RESULTS C. RESULTS

 There are two types of routine results. One is the register
 result. A routine with an R-type calling sequence can have up

 The MTS Coding Conventions
 8

 to four results in registers 0-3. A routine with an S-type
 calling sequence can have zero results, or one in register
 zero. The other type of result is the normal S-type result,
 with a value passed back through one of the parameters.

 The MTS Coding Conventions
 9

 V. Assembler Implementation V. Assembler Implementation

 The assembler implementation of the coding conventions consists
 of an extensive set of macros. Consistent with our use of some
 high-level-language techniques in object program organization,
 some high-level-language ideas have been borrowed for source
 program structure. Specifically, all routines must be declared
 prior to their definition or invocation. Routines are declared
 using a special macro that registers attribute information in
 global symbols and symbol arrays. Routine calls and returns are
 all done by macros that do attribute-checking according to the
 declarations of the routines they refer to. Routines must be
 strictly delimited -- there are delimiting macros that do
 structure-checking with the help of global symbols. Similarly,
 RSECTS and pseudo-register vectors are defined and delimited by
 structure-checking macros.

 A. SHORT LIST OF MACROS A. SHORT LIST OF MACROS

 Here is a summary list of the macros that implement the coding
 conventions:

 ROUTINE To declare a routine
 SUBROUTINE To declare a subroutine

 RBEGIN To begin a routine
 REND To end a routine, dsect, or
 pseudo-register vector

 RENTER To begin a routine and enter it
 RCALL To call a routine
 RRETURN To return from a routine
 REXIT To return from a routine and end it

 RSPARSET To set up the parameters for an S-type
 call
 RSPARLOC To define the storage for an S-type
 parameter list

 RSECT To begin an RSECT
 RSA To define a routine’s save area
 RDSECT To define a DSECT

 REGS To generate register equates
 RRCTST To test a return code

 RPRV To define a pseudo-register vector
 RPRDEF To define a pseudo-register
 RTVENTRY To define an entry in a transfer vector
 RPR To generate an RX or RS instruction that
 references a pseudo-register

 The MTS Coding Conventions
 10

 RPRI To generate an SI instruction that
 references a pseudo-register
 RPRC To generate an SS instruction that
 references a pseudo-register or registers

 RNEXT_STACK To switch to the next stack in the "stack
 of stacks"
 RPREV_STACK To switch to the previous stack in the
 "stack of stacks"

 RPUSH To push assembler options onto an
 assembly-time stack
 RPOP To pop assembler options off of an
 assembly-time stack

 RPUSHSTACK To grab stack at the end of the current
 stack frame
 RPOPSTACK To pop the stack back to the location
 saved by a previous RPUSHSTACK

 RSET To set options for use by other macros
 RDISPLAY To display the attributes of a routine.

 CCPUNT To punt after an error

 B. RULES FOR USING THE MACROS B. RULES FOR USING THE MACROS

 Here are the general rules for use of the macros:
 1. A routine must be declared before it is called and/or
 defined.
 2. A routine is delimited by its initial RBEGIN or RENTER
 macro and its terminal REND macro. Any RCALL or RRETURN
 macro that appears outside a routine is a structure error.
 Note that REND terminates a routine but RRETURN doesn’t.
 3. A ROUTINE can’t be defined inside another ROUTINE. A
 SUBROUTINE must be defined inside the ROUTINE to which it
 belongs. However, no SUBROUTINE can be defined inside
 another SUBROUTINE. A RBEGIN or RENTER macro that appears
 in such a position as to violate this rule is a structure
 error.
 4. An RSECT must begin with an RSECT macro and end with a REND
 macro.
 5. A pseudo-register definition must begin with an RPRV macro
 and end with a REND macro.
 6. Except for SUBROUTINES, no routine, RSECT, or transfer
 vector can be defined inside another routine, RSECT, or
 transfer vector. (Actually, an RSECT can be defined inside
 the routine that it belongs to. See the RSECT macro
 description.)

 The MTS Coding Conventions
 11

 C. OS LINKAGE C. OS LINKAGE

 In addition to generating calls, exits, and returns for coding
 conventions routines, the macros include fairly complete
 support for OS linkages. An external routine declared to be
 of linkage-type "OS" (see the ROUTINE macro, below) can be
 called by the normal RCALL macro, and an internal routine
 declared to be of linkage-type "OS" will be callable by a
 standard OS program.

 The implementation of this mechanism takes two forms depending
 on whether the coding conventions routine is calling the OS
 routine or is called by the OS routine. Parameter types in
 these conventions are, of course, compatible with those of OS
 programs, so parameter interfacing is never required.

 When a coding conventions routine is calling an OS routine,
 the OS routine must be provided with an OS save area pointed
 to by R13. In the coding conventions, R13 points to the next
 stack frame which is suitable for an OS save area. It is also
 necessary that the stack descriptor be updated before calling
 an OS routine, so that if the OS routine calls back into the
 coding conventions environment, the next available location on
 the stack may be used.

 When a coding conventions routine is being called by an OS
 routine, a stack must be allocated. When an internal routine
 is declared to be of linkage-type OS, the RENTER macro
 generates code to find the stack and global storage. How this
 is done is determined by the PSECT option of the ROUTINE
 macro, q.v.

 D. DETAILED DESCRIPTIONS OF MACROS D. DETAILED DESCRIPTIONS OF MACROS

 The following pages give specific documentation on each of the
 macros. Many of these macros accept parameters in either a
 functional or a keyword format. The descriptions describe the
 keyword names for the keyword format. In the functional
 format, underscores in the keywords are replaced with hyphens.
 In new applications, the keyword format should be used, since
 it assembles much faster. The functional format is supported
 for compatibility.

 The MTS Coding Conventions
 12

 ROUTINE _______

 Macro Description

 Purpose: To declare a routine.

 Prototype: label ROUTINE ENTRY,INTERNAL,EXTERNAL,
 SAVE_AREA=,CALL_TYPE=,ONMSG=,
 ONPGNT=,RSECT=,RSECT_LENGTH=,
 PRNAME=,LINKAGE_TYPE=,PSECT=,
 PARAMETER_TYPE=,ARTN=,SA_LENGTH=,
 PSECT_LENGTH=,SYMBOL_PREFIX=,
 GLOBAL_STORAGE_ADDR=,
 GLOBAL_STORAGE_PTR=,NEW_STACK=,
 INTERFACE_MACROS=,STACK_SLOP=,
 NO_STACK_RC=

 Parameters:

 label (required) is the name of the routine
 that is being declared.

 SAVE_AREA The name of the save area in the RSECT.
 The default is "xxxSA", where "xxx" are
 the first three characters of the RSECT
 name.

 CALL_TYPE or PARAMETER_TYPE
 The type of call made to this routine.
 "S" for S-form, "S(m,r)" or
 "S((min,max),r)" for S-form with m fixed
 arguments or between min and max variable
 arguments, and r return values. 0èrè1

 "R(n,m)" for R-type with n arguments and
 m return values. Default is n = m = 0.
 Maximum m = maximum n = 10.

 ONMSG The name of the message on-unit to invoke
 to dispose of messages.

 ONPGNT The name of the PGNT on-unit to invoke if
 a PGNT occurs.

 RSECT The name of the RSECT. Default is the
 first three characters of the routine
 name followed by the string "RCT".

 ROUTINE

 The MTS Coding Conventions
 13

 RSECT_LENGTH The symbol to generate giving the length
 of the RSECT. Default is the first three
 characters of the routine name followed
 by the string "RCTL".

 PRNAME Specifies the name of the pseudo-register
 that is the transfer vector entry for the
 routine being declared. Usage of this
 option implies the loading of global
 storage from the second word of the
 pseudo-register entry.

 ARTN SPecifies where the routine address
 should be loaded from. The default is
 =A(label).

 LINKAGE_TYPE Specifies the linkage-type of the
 routine. Supported types are RM, CC,
 MTS, and OS. RM and CC are the same.
 This option controls what code is
 generated to enter, leave, and call the
 routine being declared. The default is
 CC.

 PSECT=options options is one of:

 GPSECT(xxx,yyy) to call GPSECT with id
 xxx and length yyy to get space for
 global storage and the stack.

 GETSPACE(len) or GETSPACE(bits,len) to
 call GETSPACE to allocate global storage
 and stack of length len (defaults to
 2048). The second form allows a
 non-default switch value to be passed to
 GETSPACE (default is 3).

 PARAM(n) indicates that parameter "n" in
 the S-type parameter list is a full word
 which points to the global storage and
 stack

 HWIMB indicates that the
 Help-Where-Is-My-Buffer macro is to be
 used to find the MTS dsect for global
 storage.

 MACRO(name ,par1,par2,...]) indicates
 that macro "name" is to be called to find
 the global storage. par1, par2, ... are

 ROUTINE

 The MTS Coding Conventions
 14

 optional arguments to pass to the macro
 on the call.

 The PSECT option is valid only for
 linkage-type OS routines.

 PSECT_LENGTH The length of global storage. This
 option is valid only for linkage-type OS
 routines, and indicates where in the
 allocated storage to draw the line
 between global storage and stack. The
 default is 8 bytes.

 SA_LENGTH Length of OS save area required by this
 routine when called. This option is
 usually used to allocate more than 72
 bytes when updating the stack pointer in
 the stack descriptor before calling an OS
 routine.

 SYMBOL_PREFIX The prefix to use when generating
 symbols. The default is the first three
 characters of the routine name.

 GLOBAL_STORAGE_ADDR=xxx
 Specifies that "xxx" is the actually
 global storage for the routine. Valid
 only for linkage-type CC routines.

 GLOBAL_STORAGE_PTR=xxx
 Specifies that R11 should be loaded from
 location "xxx" before calling the
 routine. Valid only for linkage-type CC
 routines.

 INTERFACE_MACROS Specifies a parenthesized list of macros
 to be used to generate call, entry, and
 exit code for the specified routine. If
 any macro name is omitted, the
 corresponding default will be used.

 STACK_SLOP Specifies the size of the area to reserve
 at the end of the stack allocated upon
 entry to an OS type routine, to be used
 for detecting stack overflow. Defaults
 to 16*4, to allow a register save.

 NO_STACK_RC Specifies the return code to give in the
 event that the entry code failed to
 find/allocate a new stack. If this

 ROUTINE

 The MTS Coding Conventions
 15

 parameter is omitted, the CCPUNT macro is
 called.

 The following parameters may be specified as positional
 parameters:

 INTERNAL Designates an internal routine. This is
 the default.

 ENTRY =name] Designates an externally callable
 routine. If specified as ENTRY=name or
 ENTRY=(name1,name2,...,namen), the
 specified names are defined as aliases
 for the routine being declared.

 EXTERNAL =name] If specified as a simple positional
 parameter, EXTERNAL causes the generation
 of an assembler "EXTRN" statement for the
 routine. If specified as a keyword
 parameter (EXTERNAL=name), the name is
 used instead of the declared routine
 name.

 NEW_STACK =len] Specifies that the stack link in the
 stack descriptor should be used to find a
 new stack. If a length is provided, it
 means that if there is no next stack, one
 of length "len" should be allocated.

 CLSTV Specifies that the routine is to be
 called via the CLS transfer vector. The
 code to call the routine will assume that
 the first word of the global storage
 contains a pointer to the CLS transfer
 vector, and that a dsect with the name
 CLSTV has been defined. The routine name
 must be the same as the entry from CLSTV.

 ROUTINE

 The MTS Coding Conventions
 16

 Description: The ROUTINE macro is probably the most important
 of all the macros, since it is the one that
 affects how all the others will work. The values
 specified on its invocation are saved in global
 symbols, and are used to do structure checking,
 and to determine what code should be generated.

 Examples:

 TEST ROUTINE

 This is the simplest possible invocation of the macro. It
 defines an internal routine TEST with no parameters, no result,
 and LINKAGE_TYPE=CC.

 TEST ROUTINE EXTERNAL,PARAMETER_TYPE=R(2,1)

 This example defines the routine TEST to have two R-type
 parameters (in R0 and R1), and one R-type result (in R0). It is
 externally callable, and has LINKAGE_TYPE=CC.

 TEST ROUTINE LINKAGE_TYPE=OS,
 PSECT=GPSECT(TEST,4096),
 PARAMETER_TYPE=R(0,1)

 This example defines the routine TEST to be an OS-linkage
 routine, that should call GPSECT to find the global storage and
 stack. Since the global storage size isn’t specified, it
 defaults to 8 bytes. The routine has no parameters, and returns
 one result.

 TEST ROUTINE LINKAGE_TYPE=OS,
 PSECT=GPSECT(TEST,4096),
 PARAMETER_TYPE=S(3,0)

 This example defines the routine TEST to be an OS-linkage
 routine, that should call GPSECT to find the global storage and
 stack. Since the global storage size isn’t specified, it
 defaults to 8 bytes. The routine has three S-type parameters,
 and no result.

 ROUTINE

 The MTS Coding Conventions
 17

 SUBROUTINE __________

 Macro Description

 Purpose: To declare a subroutine.

 Prototype: label SUBROUTINE parent,PARAMETER_TYPE=,
 CALL_TYPE=

 Parameters:

 label (required) is the name of the subroutine
 that is being declared.

 parent is the name of the containing routine in
 which the subroutine appears. It must be
 declared by the ROUTINE macro before this
 macro call.

 CALL_TYPE or PARAMETER_TYPE
 are the same as for the ROUTINE macro.

 Description: The SUBROUTINE macro declares a subroutine, which
 is a procedure which is internal to another
 routine. It saves registers and is
 self-addressable, but uses its parent routine’s
 stack. Subroutines can call other routines, but
 they can only call other subroutines that belong
 to their parent routine.

 Examples:

 TEST ROUTINE ENTRY
 TESTSUBRSUBROUTINE TEST,CALL_TYPE=R(2,1)

 This example defines the routine TEST, which is externally
 callable, and the subroutine TESTSUBR, which may only be called
 from within TEST. TESTSUBR takes two R-type parameters, and
 returns one R-type result.

 SUBROUTINE

 The MTS Coding Conventions
 18

 RBEGIN ______

 Macro Description

 Purpose: To begin a routine.

 Prototype: label RBEGIN LABEL=

 Parameters:

 label (required) is the name of the routine
 being begun.

 LABEL= YES×NO] If LABEL=NO is specified, generation of
 the label for the routine name is
 suppressed. The default is LABEL=YES.

 Description: The RBEGIN macro is a structure-delimiting macro.
 It indicates the beginning of a routine. It is
 illegal if already in a routine definition, unless
 RBEGINning a subroutine.

 NOTE: The RBEGIN macro is not normally used
 explicitly, since it is emitted by the RENTER
 macro (q.v.). It is usually only required for
 routines that must have hand-coded entry
 sequences.

 Examples:

 TEST RBEGIN

 This example begins the routine TEST. No entry code is
 generated. TEST is defined as a label.

 TEST RBEGIN LABEL=NO

 This example begins the routine TEST, but does not define the
 label TEST. This is useful, for example, to begin a routine that
 is of the same name as the enclosing CSECT.

 RBEGIN

 The MTS Coding Conventions
 19

 REND ____

 Macro Description

 Purpose: To end a routine, RSECT, pseudo-register, or
 pseudo-register vector definition.

 Prototype: label REND name,LEN=

 Parameters:

 label (optional) If ending a routine or
 pseudo-register vector, the statement
 label is ignored. If ending an RSECT or
 pseudo-register the statement label will
 be defined as the last+1 byte of the
 RSECT or pseudo-register.

 name (optional) is the name of the routine,
 RSECT, pseudo-register, or
 pseudo-register vector that is being
 ended.

 LEN= YES×NO] If LEN=YES is specified (the default),
 and an RSECT is being ended, REND will
 generate the EQU that defines the RSECT
 length symbol mentioned or defaulted in
 the routine declaration.

 REND

 The MTS Coding Conventions
 20

 RENTER ______

 Macro Description

 Purpose: To begin a routine and enter it.

 Prototype: label RENTER LABEL=,OVERFLOW_EXIT=,
 OVERFLOW_FLAG=

 Parameters:

 label (optional) is the name of the routine
 being entered. If no label is given,
 RENTER assumes a routine has already been
 begun, and just generates the entry code.

 LABEL= YES×NO] If LABEL=NO is specified, generation of
 the label for the routine name is
 suppressed. The default is LABEL=YES.

 OVERFLOW_EXIT= is the label to branch to if a stack
 overflow occurs.

 OVERFLOW_FLAG= is the name of the flag to set if a stack
 overflow occurs.

 Only one of the OVERFLOW keywords may be
 specified. If OVERFLOW_CHECK=OFF was
 specified on the RSET macro, the OVERFLOW
 keywords are ignored.

 Description: The RENTER macro is a structure-delimiting macro.
 It indicates the beginning of a routine. It is
 illegal if already in a routine definition, unless
 RENTERing a subroutine. RENTER emits a RBEGIN,
 followed by entry code appropriate to the
 LINKAGE_TYPE of the routine being entered.

 RENTER

 The MTS Coding Conventions
 21

 Examples:

 TEST RENTER

 This example enters the routine TEST. TEST is defined as a
 label.

 TEST RENTER LABEL=NO

 This example enters the routine TEST, but does not define the
 label TEST. This is useful, for example, to enter a routine that
 is of the same name as the enclosing CSECT.

 TEST RENTER OVERFLOW_FLAG=OFLOW

 This example enters the routine TEST. If a stack overflow
 occurs, the flag OFLOW is set to 1. OFLOW must be defined with
 the FLAGS macro (see MTS Volume 14).

 RENTER

 The MTS Coding Conventions
 22

 RCALL _____

 Macro Description

 Purpose: To call a routine.

 Prototype: label RCALL routine,arg2,EXIT=,PARLOC=,VL=

 Parameters:

 label (optional) is a branch target.

 routine is the name of the routine being called,
 and possibly its parameter list (eg.
 routine(p1,p2,p3,p4)). The number of
 parameters must agree with the number
 that the routine was declared to have.
 Null parameters may be supplied to
 fulfill this requirement.

 arg2 is not valid for calling an R-type
 routine. When calling an S-type routine,
 if the PARLOC keyword is not given, arg2
 is the name of the parameter list, or if
 parenthesized, is the name of the
 register that points to the parameter
 list. If omitted, it is assumed that R1
 already contains the address of the
 S-type parameter list.

 EXIT= is exactly the same as for the MTS READ,
 WRITE, etc macros, q.v.

 PARLOC= is not valid for calling an R-type
 routine. For calling an S-type routine,
 it specifies where the parameter list for
 the call should be built. If PARLOC is
 given, a parameter list may be
 concatenated to the routine name, as for
 R-type calls.

 VL= YES×NO] may be used to inhibit the setting of the
 VL-bit. The default is VL=YES.

 RCALL

 The MTS Coding Conventions
 23

 Description: Legal forms of parameters and what they generate
 are ("Rx" means one of R0, R1, R2, or R3):
 1. A simple name means a fullword:
 XXX generates L Rx,XXX
 2. A parenthesized name means a register:
 (XXX) generates LR Rx,XXX
 3. A quote-enclosed name means a character
 literal:
 ’XXX’ generates L Rx,=CL4’XXX’
 4. A construct of the form A(...) means an
 address:
 A(XXX) generates LA Rx,XXX
 XXX may be a literal.
 5. A construct of the form H(...) means a
 halfword:
 H(XXX) generates LH Rx,XXX
 XXX may be a literal.
 6. A null parameter as in the list "x,,y"
 generates nothing -that is the value in the
 corresponding register is left unchanged.

 Examples:

 RCALL TEST_R(=F’1’)
 RCALL TEST_R(A(1))

 These examples both call the R-type routine TEST, passing a 1 in
 R0.

 RCALL TEST_S(A(JUNK)),PARLOC=TESTPARS

 This example calls the S-type routine TEST, passing the address
 of TESTPARS in R1. TESTPARS will contain the address of JUNK in
 the first word.

 RCALL TEST_S,TESTPARS

 This example is similar to the previous one, except that the
 parameter list is assumed to have been previously constructed.

 RCALL TEST_S

 RCALL

 The MTS Coding Conventions
 24

 This example is similar to the previous one, except that R1 is
 assumed to contain the address of an S-type parameter list.

 RCALL

 The MTS Coding Conventions
 25

 RRETURN _______

 Macro Description

 Purpose: To return from a routine.

 Prototype: label RRETURN VALUE=,RETURN_CODE=

 Parameters:

 label (optional) is a branch target.

 VALUE= specifies the result(s) to be returned.
 It must be a parenthesized list with
 enough operands to satisfy the
 declaration. Null operands may be
 provided to fulfill this requirement.
 The operands have the save format as
 R-type parameters to the RCALL macro,
 q.v.

 RETURN_CODE= specifies the return code to be loaded
 into R15 before returning. If omitted,
 R15 is restored. The operand has the
 same format as R-type parameters to the
 RCALL macro, q.v. RC is a synonym for
 RETURN_CODE.

 Examples:

 RRETURN VALUE=(,(R7))

 This example returns to the caller, passing as results in R0 and
 R1 the current contents of R0 and R7. R15 is restored.

 RRETURN VALUE=(RESULT),RC=4

 This example returns to the caller, passing the contents of the
 word at RESULT in R0, and giving a return code of 4 in R15.

 RRETURN

 The MTS Coding Conventions
 26

 REXIT _____

 Macro Description

 Purpose: To return from a routine and end it.

 Prototype: label REXIT VALUE=,RETURN_CODE=

 Parameters:

 label (optional) is a branch target.

 VALUE= specifies the result(s) to be returned.
 It must be a parenthesized list with
 enough operands to satisfy the
 declaration. Null operands may be
 provided to fulfill this requirement.
 The operands have the save format as
 R-type parameters to the RCALL macro,
 q.v.

 RETURN_CODE= specifies the return code to be loaded
 into R15 before returning. If omitted,
 R15 is restored. The operand has the
 same format as R-type parameters to the
 RCALL macro, q.v. RC is a synonym for
 RETURN_CODE.

 Description: The REXIT macro just emits an RRETURN followed by
 an REND.

 REXIT

 The MTS Coding Conventions
 27

 RSPARSET ________

 Macro Description

 Purpose: To build the parameter list for an S-type routine.

 Prototype: label RSPARSET pars,routine,VL=

 Parameters:

 label (optional) is a branch target.

 pars is the name of the location where the
 parameter list is to be built.

 routine is the name of the routine, concatenated
 to the parameter list that is to be built
 (eg. TEST(A(FDUB),A(JUNK))).

 VL= YES×NO] may be used to inhibit the setting of the
 VL-bit. The default is VL=YES.

 Description: This macro is used to build parameter lists for
 S-type routines. It is normally used for
 parameter lists that don’t change, but can also be
 used with the "routine,parlist" form of the RCALL
 macro, q.v.

 Examples:

 TEST_S ROUTINE PARAMETER_TYPE=S(2))
 .
 .
 RSPARSET TESTPARS,TEST_S(A(FDUB),A(JUNK))
 RCALL TEST_S,TESTPARS
 .
 .
 xxxRCT RSECT
 TESTPARSRSPARLOC TEST_S
 REND xxxRCT

 This example calls the S-type routine TEST_S. When TEST_S is
 entered, R1 will contain the address of TESTPARS. TESTPARS will

 RSPARSET

 The MTS Coding Conventions
 28

 contain the address of FDUB in the first word and the address of
 JUNK in the second word.

 RSPARSET

 The MTS Coding Conventions
 29

 RSPARLOC ________

 Macro Description

 Purpose: To reserve storage for a parameter list in an
 RSECT.

 Prototype: label RSPARLOC routine,routine,...

 Parameters:

 label (optional) is the name of the storage
 area that will be reserved.

 routine,... is a list of routine names. RSPARLOC
 will reserve a large enough block of
 storage for the largest parameter list.

 Examples:

 SERCOM ROUTINE EXTERNAL,LINKAGE_TYPE=OS,
 PARAMETER_TYPE=S(4,1)
 WRITE ROUTINE EXTERNAL,LINKAGE_TYPE=OS,
 PARAMETER_TYPE=S(5,1)
 .
 .
 TESRCT RSECT
 WRITPARSRSPARLOC SERCOM,WRITE
 REND TESRCT

 This example will reserve five words in the RSECT.

 RSPARLOC

 The MTS Coding Conventions
 30

 RSECT _____

 Macro Description

 Purpose: To define an RSECT.

 Prototype: label RSECT SA=

 Parameters:

 label (optional) is the name of the RSECT that
 is being defined. It may be omitted if
 the RSECT is being defined within its
 parent routine.

 SA= YES×NO] If SA=YES (the default), a save area will
 be generated as the first 16 words of the
 RSECT.

 Description: The RSECT macro is used to describe routine local
 storage. Its invocation is followed by
 DSECT-style definitions of any local variables
 that the routine needs. These variables can be
 automatically initialized by using the DCI macros.
 RSECTs are ended by the REND macro, q.v.

 Examples:

 TESRCT RSECT
 TES_SAVEDS F Place to save a fullword
 REND TESRCT

 This example defines the RSECT TESRCT. It contains a 16-word
 save area at the front, followed by the fullword TESSAVE. _

 RSECT

 The MTS Coding Conventions
 31

 RSA ___

 Macro Description

 Purpose: To generate a save area.

 Prototype: label RSA

 Parameters:

 label (optional) the name of the save area.
 This must agree with the declared save
 area name for the containing RSECT’s save
 area.

 Description: This macro is normally generated automatically by
 the RSECT macro. It may be hand coded only if only
 SA=NO was specified on the RSECT macro.

 RSA

 The MTS Coding Conventions
 32

 RDSECT ______

 Macro Description

 Purpose: To begin and end a DSECT.

 Prototype: label RDSECT END]

 Parameters:

 label (required) is the DSECT name to begin.

 END if specified, means that the dsect should
 be ended, and that a return should be
 made to the enclosing section.

 Description: The RDSECT macro saves the current section when a
 DSECT is begun, so that it can be poped back to
 when the DSECT definition is completed. It is
 particularly useful in COPY sections.

 Examples:

 TEST RDSECT
 .
 .
 RDSECT END

 RDSECT

 The MTS Coding Conventions
 33

 REGS ____

 Macro Description

 Purpose: To generate register equates

 Prototype: label REGS

 Parameters: None

 Description: This macro generates EQUs for the symbols R0-R15,
 FR0-FR6, NXTFRAME (R13), and CURFRAME (R12).

 REGS

 The MTS Coding Conventions
 34

 RRCTST ______

 Macro Description

 Purpose: Test a return code in a register.

 Prototype: label RRCTEST list,R=

 Parameters:

 label (optional) is a branch target.

 list is either a single branch target or a
 parenthesized list of branch targets.
 Alternatively, the targets may be
 specified as multiple simple positional
 operands. This form allows use of the
 expanded macro calling sequence, which in
 turn allows a comment to appear on each
 exit option.

 R= specifies the register to test. The
 default is R15 (of course).

 Description: RRCTEST generates branching code in such a way
 that a return code higher than the highest
 expected value causes a branch to the location
 specified for the highest expected value. Null
 branch targets are translated into branches to the
 end of the return-code testing sequence.

 Examples:

 RRCTEST (A,B,,C)

 In this example, a return code of 4 transfers to A, 8 to B, 12
 causes no transfer, and 16 or greater transfers to C.

 RRCTEST A, comment for RC 4
 B,, comment for RC 8
 C comment for RC 16

 RRCTST

 The MTS Coding Conventions
 35

 This example is just like the previous one, but uses the extended
 macro calling sequence so that a comment can appear for each
 return code.

 RRCTST

 The MTS Coding Conventions
 36

 RPRV ____

 Macro Description

 Purpose: To start a pseudo-register vector definition.

 Prototype: label RPRV LCSPRCS=,ABSOLUTE=

 Parameters:

 label (optional) is the name of the
 pseudo-register initialization routine.
 If omitted, no initialization routine is
 generated.

 LCSPRCS= (optional) is the name of the CSECT to
 put the LCSPR table in. If omitted, no
 LCSPR table is generated.

 ABSOLUTE= NO×YES] controls whether or not an LCSPR table
 with absolute as opposed to Q-con offsets
 is generated. The default is
 ABSOLUTE=NO.

 Description: The RPRV macro begins the definition of a
 pseudo-register vector. See also RPRDEF, which is
 used to define pseudo-registers, and RTVENTRY,
 which is used to define transfer vector entries
 (which are, of course, special pseudo-registers).

 RPRV

 The MTS Coding Conventions
 37

 RPRDEF ______

 Macro Description

 Purpose: To define a pseudo-register.

 Prototype: label RPRDEF alignment,length

 Parameters:

 label (optional) is the name of the
 pseudo-register being defined.

 alignment is either the keyword DSECT, which
 implies that a DSECT-type pseudo-register
 is being defined, or one of "D", "F",
 "H", or "B", for doubleword, fullword,
 halfword, or byte alignment,
 respectively, which implies that a
 DXD-type pseudo-register is being
 defined.

 length is the length of the DXD-type
 pseudo-register being defined.

 Description: RPRDEF emits either a DXD instruction, or else
 emits a DSECT instruction and sets things up so
 that REND can end the DSECT. If the RPRDEF is
 inside a pseudo-register vector definition, RPRDEF
 either sets up so that REND can generate the LCSPR
 entry (for DSECT-type pseudo-registers) or
 generates the LCSPR entry (for DXD-type
 pseudo-registers).

 Examples:

 FAKEPR RPRDEF D,8

 This example generates a pseudo-register with doubleword
 alignment and length 8.

 FAKEPR RPRDEF DSECT

 RPRDEF

 The MTS Coding Conventions
 38

 FIELD1 DS D First field is a
 doubleword
 FIELD2 DS F Second is a fullword
 REND FAKEPR End the pseudo-register
 dsect

 RPRDEF

 The MTS Coding Conventions
 39

 RTVENTRY ________

 Macro Description

 Purpose: To define a transfer vector entry.

 Prototype: label RTVENTRY routine

 Parameters:

 label (required) is the pseudo-register name
 for the transfer vector entry.

 routine (required) is the routine name.

 Description: This macro is not normally coded by the programmer
 -- it is used by the ROUTINE macro to implement
 the PRNAME option. If the RTVENTRY macro appears
 inside a pseudo-register vector definition for
 which an initialization routine is being
 generated, code will be generated to initialize
 the transfer vector entry.

 Examples:

 PRGTSPCERTVENTRY UCGTSPCE

 This example defines the pseudo-register PRGTSPCE as two
 fullwords. The first will contain the address of UCGTSPCE, and
 the second will contain the value that UCGTSPCE expects to be in
 R11 when it is called.

 RTVENTRY

 The MTS Coding Conventions
 40

 RPR ___

 Macro Description

 Purpose: To generate an RX- or RS-format instruction that
 references a pseudo-register or a location in a
 pseudo-register DSECT.

 Prototype: label RPR inst,opnd1,opnd2,opnd3,COMMENT=

 Parameters:

 label (optional) is a branch target.

 inst is the instruction to emit.

 opnd1,opnd2 ,opnd3] are the operands for the instruction.
 The syntax of the operands follows the
 normal assembler rules, with the
 additional requirement that if a symbol
 is a component of a DSECT that describes
 a pseudo-register, it must be coded as
 ".SSS", where "SSS" is the actual symbol.
 Similarly, if a pseudo-register is being
 referenced directly, its name must be
 suffixed with a ".", i.e. it must be
 coded in the form "DDD.".

 COMMENT= is a comment to emit with the
 instruction.

 Examples:

 RPR L,R1,FAKEPR.

 This example loads R1 with the contents of the pseudo-register
 FAKEPR.

 RPR L,R15,.FIELD1

 This example loads R1 with the contents of the field FIELD1,
 which is a member of a DSECT-type pseudo-register.

 RPR

 The MTS Coding Conventions
 41

 RPRI ____

 Macro Description

 Purpose: To generate an SI-format instruction that
 references a pseudo-register or a location in a
 pseudo-register DSECT.

 Prototype: label RPRI inst,opnd1,opnd2

 Parameters:

 label (optional) is a branch target.

 inst is the instruction to emit.

 opnd1,opnd2 are the operands for the instruction.
 The syntax of the operands follows the
 normal assembler rules, with the
 additional requirement that if a symbol
 is a component of a DSECT that describes
 a pseudo-register, it must be coded as
 ".SSS", where "SSS" is the actual symbol.
 Similarly, if a pseudo-register is being
 referenced directly, its name must be
 suffixed with a ".", i.e. it must be
 coded in the form "DDD.".

 Examples:

 RPRI TM,FAKEPR.,X’01’

 This example executes a TM instruction on the contents of the
 pseudo-register FAKEPR.

 RPRI

 The MTS Coding Conventions
 42

 RPRC ____

 Macro Description

 Purpose: To generate an SS-format instruction that
 references a() pseudo-register(s) or a()
 location(s) in a pseudo-register DSECT.

 Prototype: label RPRC inst,opnd1,opnd2

 Parameters:

 label (optional) is a branch target.

 inst is the instruction to emit.

 opnd1,opnd2 are the operands for the instruction.
 The syntax of the operands follows the
 normal assembler rules, with the
 additional requirement that if a symbol
 is a component of a DSECT that describes
 a pseudo-register, it must be coded as
 ".SSS", where "SSS" is the actual symbol.
 Similarly, if a pseudo-register is being
 referenced directly, its name must be
 suffixed with a ".", i.e. it must be
 coded in the form "DDD.".

 Examples:

 RPRC CLC,0(4,R1),FAKEPR.

 This example compares the location pointed to by R1 with the
 contents of the pseudo-register FAKEPR.

 RPRC

 The MTS Coding Conventions
 43

 RNEXT_STACK ___________

 Macro Description

 Purpose: To switch to the next stack in the stack of
 stacks, and set up R12 and R13 appropriately.

 Prototype: label RNEXT_STACK

 Parameters:

 label (optional) is a branch target.

 FULLSAVE= YES×NO] If FULLSAVE=YES is specified, than the
 registers are saved into the new stack
 after the switch is made. The default is
 FULLSAVE=YES.

 Description: This macro is primarly designed for use in exit
 routines, where some initial processing must be
 done before the stack switch can be made (since
 the stack switch can’t be done as part of the
 entry sequence).

 Examples:

 RNEXT_STACK

 This example switches to the next available stack. If there is
 no available stack, the CCPUNT macro is called. After switching
 to the next stack, R0 through R15 are saved in the save area of
 the routine’s RSECT.

 RNEXT_STACK

 The MTS Coding Conventions
 44

 RPREV_STACK ___________

 Macro Description

 Purpose: To revert to the previous stack in the stack of
 stacks.

 Prototype: label RPREV_STACK

 Parameters:

 label (optional) is a branch target.

 Description: This macro is primarly designed for use in exit
 routines, to return the stack descriptor to its
 previous state, immediately before doing a POPQ.

 Examples:

 RPREV_STACK

 This example switches back to the previous stack in the stack of
 stacks.

 RPREV_STACK

 The MTS Coding Conventions
 45

 RPUSH _____

 Macro Description

 Purpose: To push a state variable onto an assembly-time
 stack.

 Prototype: label RPUSH option, option,...]

 Parameters:

 label the label field is ignored.

 option is either the keyword SECTION, or else
 any legal ASMH PUSH pseudo-op operand.

 Description: The RPUSH macro is provided because stupid ASMH
 can’t PUSH and POP the current section.

 Examples:

 RPUSH SECTION,USING

 This example saves the current section and using state.

 RPUSH

 The MTS Coding Conventions
 46

 RPOP ____

 Macro Description

 Purpose: To pop a state variable off an assembly-time stack
 and make it the current state.

 Prototype: label RPOP option, option,...]

 Parameters:

 label the label field is ignored.

 option is either the keyword SECTION, or else
 any legal ASMH POP pseudo-op operand.

 Description: The RPOP macro is provided because stupid ASMH
 can’t PUSH and POP the current section.

 Examples:

 RPOP SECTION,USING

 This example restores the previous section and using states.

 RPOP

 The MTS Coding Conventions
 47

 RPUSHSTACK __________

 Macro Description

 Purpose: To grab space at the end of the current stack
 frame.

 Prototype: label RPUSHSTACK addr,len,EXIT=,ERRFLAG=,R=

 Parameters:

 label (optional) is a branch target.

 addr is the location of a fullword, or a
 register in parentheses, in which the
 current stack top pointer can be saved.

 len is the number of bytes to grab.

 EXIT= is the label to branch to if a stack
 overflow occurs.

 ERRFLAG= is the name of the flag to set if a stack
 overflow occurs.

 Only one of the EXIT or ERRFLAG keywords
 may be specified. If OVERFLOW_CHECK=OFF
 was specified on the RSET macro, they are
 ignored.

 R= If either the EXIT or ERRFLAG keywords is
 specified, a temporary register (defaults
 to R15) will be used to make the stack
 overflow check.

 Description: This macro is used to grab space at the end of the
 current stack frame. This is done by bumping the
 value in R13. RPUSHSTACK and RPOPSTACK can be
 used together to make sure that a certain amount
 of space exists at the end of the stack, before
 calling some other routine that doesn’t do its own
 stack checking.

 RPUSHSTACK

 The MTS Coding Conventions
 48

 Examples:

 RPUSHSTACK SAVER13,256

 This macro increments R13 by 256. No stack overflow checking is
 done.

 SET STK_OFLO,OFF
 RPUSHSTACK SAVER13,256,ERRFLAG=STK_OFLO
 RPOPSTACKSAVER13

 This example checks to make sure that there are at least 256
 bytes available at the end of the stack. If not, the flag
 STK_OFLO is set TRUE.

 RPUSHSTACK

 The MTS Coding Conventions
 49

 RPOPSTACK _________

 Macro Description

 Purpose: To pop the stack end back to the location saved by
 a previous RPUSHSTACK.

 Prototype: label RPOPSTACK addr

 Parameters:

 label (optional) is a branch target.

 addr is the location of a fullword, or a
 register number in parentheses, to which
 the current stack top pointer should be
 restored.

 Examples:

 RPOPSTACK(R5)

 In this example, the stack top pointer is restored from R5.

 RPOPSTACKSAVER13

 In this example, the stack top pointer is restored from the
 fullword SAVER13.

 RPOPSTACK

 The MTS Coding Conventions
 50

 RSET ____

 Macro Description

 Purpose: To set various options that control how the rest
 of the macros function.

 Prototype: label RSET STACK_OVERFLOW_CHECK=,OLD_PR_REF=

 Parameters:

 label the label field is ignored.

 STACK_OVERFLOW_CHECK= YES×NO]
 if NO, specifies that no stack overflow
 checking is to be done, even if it is
 requested on the RENTER macro. The
 default is STACK_OVERFLOW_CHECK=YES, but
 the checking must be requested on the
 RENTER macro in order to have the
 checking code be generated.

 OLD_PR_REF= NO×YES] if YES, specifies that DSECT-type
 pseudo-register references will be coded
 as "DDD.SSS", where DDD is the dsect name
 and SSS is the symbol name. The default
 is OLD_PR_REF=NO. The "DDD.SSS" notation
 is the old ASMG notation. If used,
 qualified symbols (named USINGs) will not
 be available on any operand that can
 possibly be a pseudo-register reference,
 and the assembly will take longer.

 RSET

 The MTS Coding Conventions
 51

 RDISPLAY ________

 Macro Description

 Purpose: To display the attributes of a routine.

 Prototype: label RDISPLAY rtn

 Parameters:

 label the label field is ignored.

 rtn is name of the routine to display.

 Description: In addition to being the name of the routine to
 display, "rtn" may be one of the following special
 items:
 1. "(X)" displays the routine that &RTN points to,
 if any.
 2. "(NON)" displays the current non-trivial
 routine, if any.
 3. "(SUBR)" displays the current subroutine, if
 any.
 4. "(CURRENT)" displays the current routine, if
 any.
 5. "(RSECT)" displays the routine for the current
 RSECT, if any.

 RDISPLAY

 The MTS Coding Conventions
 52

 CCPUNT ______

 Macro Description

 Purpose: To punt after an error is detected by the macros.

 Prototype: label CCPUNT

 Parameters:

 label (optional) is a branch target.

 Description: This macro is invoked by various other macros when
 they detect an error condition. It generates a
 DC H’0’. It is provided so that individual
 programs can replace it with something more
 meaningful, if desired.

 CCPUNT

 The MTS Coding Conventions
 53

 VI. Differences From Earlier Versions VI. Differences From Earlier Versions

 The current version of the coding conventions is the third main
 version since the coding conventions were originally designed,
 although there have been ongoing minor changes. Differences
 between these versions are described here.

 A. DIFFERENCES BETWEEN VERSION 3 AND VERSION 2 A. DIFFERENCES BETWEEN VERSION 3 AND VERSION 2

 1. Stack overflow checking 1. Stack overflow checking

 Stack overflow checking is implemented through the use of
 stack descriptors. For each stack, there is a six-word
 stack descriptor (located, by convention, as the six-words
 immediately before the stack, and allocated as part of the
 stack allocation. Thus, a 4096 byte stack actually has
 only 4072 usable bytes.) The words in this descriptor are:
 1. The upper limit of the stack (highest address).
 2. The current stack pointer. This word is set as part of
 the process of calling a non-coding conventions routine,
 and is thus valid only when not in the coding only
 conventions environment. It is used when re-entering
 the coding conventions environment, to re-establish the
 stack.
 3. The stack base (lowest address).
 4. The address of the next stack descriptor (or zero).
 5. The address of the previous stack descriptor (or zero).
 6. Unused (always zero).
 The next and previous pointers are used to implement a
 "stack of stacks", so that exit routines or other
 asynchronous code can use a fresh stack without fear of
 corrupting the current stack.

 The six-word stack descriptor described above is called the
 full stack descriptor. In addition, there is a global full global
 stack descriptor, which is four words long. The address of
 the global stack descriptor is assumed to be at offset 4 in
 the global storage (4(,R11)). The global stack descriptor
 always describes the current stack. The first three words current
 of the global stack descriptor are the same as the first
 three words of the full stack descriptor. The fourth word
 of the global stack descriptor is the address of the full
 stack descriptor for the current stack.

 So, with all that out of the way, stack overflow checking
 is implemented by comparing the R13 value at entry to a
 routine with the stack limit word in the global stack

 The MTS Coding Conventions
 54

 descriptor.

 2. Global Storage Switching 2. Global Storage Switching

 In earlier versions of the coding conventions, there was
 only one block of global storage, and it was global to the
 entire set of programs that were making use of the coding
 conventions. This made it necessary, for example, for all all
 Plus programs to allocate sufficient global storage to
 account for the sub-tasking monitor’s global storage, just
 in case any Plus program should want to use the sub-tasking any
 monitor. To avoid this problem, the concept of global
 storage switching was invented. In this concept, a package
 of subroutines (say, the sub-tasking-monitor), may want to
 have an area of global storage. The initialization routine
 for the package will allocate this storage, and return a
 pointer to it. On all subsequent calls to routines in the
 package, the caller is expected to provide this address in
 R11.

 3. Replacement of trivial routines 3. Replacement of trivial routines

 Versions 1 and 2 of the coding conventions had two
 different types of routines: non-trivial and trivial.
 Experience with trivial routines showed that they were too
 trivial to be very useful. The fact that they didn’t save
 and restore registers and the fact that they couldn’t call
 each other have proved to be impractically severe
 restrictions.

 On the other hand, there was a need for the ability to have
 several routines share a single RSECT and set of working
 register values, as trivial routines and their parent
 non-trivial routines did.

 Accordingly, it was decided to implement a new type of
 routine called a SUBROUTINE that has some of the properties
 of a trivial routine without all of its limitations. A
 subroutine "belongs" to a routine in the sense that it is
 coded physically inside the routine and shares the
 routine’s RSECT. However, each subroutine saves and
 restores registers (on the stack, just after the end of the
 current RSECT), and each subroutine is self-addressable
 using R10. Subroutines are called by BALR R14,R15 and may
 call each other as long as all subroutine-subroutine calls
 do not cross from one routine’s subroutine set into
 another’s.

 Any routine declared to be a TRIVIAL routine will be
 converted (with a message) to a subroutine by the current
 coding conventions.

 The MTS Coding Conventions
 55

 4. General cleanup 4. General cleanup

 Compatible modifications were made to take advantage of
 some ASMH features. These changes improved the quality of
 the code in the macros (as much as cleanup is possible in
 so ghastly a language) and increased the speed of doing
 assemblies using them.

 In addition to the above changes, a number of minor internal and
 external improvements were made in the process of making the
 update.

 B. DIFFERENCES BETWEEN VERSION 2 AND VERSION 1 B. DIFFERENCES BETWEEN VERSION 2 AND VERSION 1

 1. Reversing the roles of R12 and R13 1. Reversing the roles of R12 and R13

 In version 1 of the coding conventions, R13 was used as the
 current stack frame base, and R12 as the next stack frame
 base. This meant that R13 had to be set before any call to
 an OS routine, and then restored when that routine
 returned. It was observed that by simply reversing the
 usage of R12 and R13, this problem could be avoided.

 2. Removal of scratch registers 2. Removal of scratch registers

 The original idea of having R0 through R3 not be restored
 by routine calls was not well-received by programmers
 outside UBC. Accordingly, the macros were changed to
 restore all registers (except for return values, of course) all
 after each call.

 3. Making R11 the MTS dsect base in the MTS assemblies 3. Making R11 the MTS dsect base in the MTS assemblies

 Originally, R4 was made the MTS DSECT (i.e. global storage)
 base register in the MTS usage of the coding conventions
 because R4 has traditionally been the MTS DSECT base
 register in pre- coding conventions code. However, it was
 agreed that R11 is a more convenient register to use for
 this purpose. This is partly because the general coding
 conventions use R11 for their global storage pointer, so
 that using R11 in the MTS conventions would make both
 standards the same in this area. More importantly, R11 is
 more convenient because R4 is in the middle of the working
 registers, while R11 is at the upper end of the register
 set, where all of the other reserved registers are.

 Making this change allowed the MTS assemblies to use the
 standard macros, with the extensions described in the next
 section.

 The MTS Coding Conventions
 56

 VII. The Coding Conventions and the MTS assemblies VII. The Coding Conventions and the MTS assemblies

 Use of the coding conventions in the MTS assemblies is basically
 the same as their use elsewhere, except for a few details, which
 will be described here.

 A. INTERFACING MACROS A. INTERFACING MACROS

 All the usual macros are used by the MTS assemblies. In
 addition, two other macros are provided to interface between
 routines coded according to the conventions and routines coded
 not according to the conventions. These macros are RICALL, to
 allow an old-style, non-coding conventions routine to call a
 coding conventions one, and RAENTER, to define an interface
 routine that lets a coding conventions routine call an
 old-style non-coding conventions one.

 RICALL is a macro that sets up the coding conventions
 environment, then does an RCALL to the routine being invoked.
 It is used just like RCALL, except that it must be coded
 outside a declared routine, while RCALL must be coded inside outside inside
 one.

 RAENTER is a macro that is callable from the coding
 conventions environment, but which sets up the old-style MTS
 environment before it finishes. The purpose of RAENTER is to
 facilitate the coding of what are called adaptor routines. An adaptor routines
 adaptor routine is an interface that surrounds an old-style
 routine and makes it look like a new-style one. The form of
 an adaptor routine is:

 name RAENTER
 . (code to call the
 . old-style routine)
 RRETURN (as usual)
 REND (as usual)

 RSECT (as usual)
 REND (as usual)

 An adaptor routine is declared and called just as if it were a
 normal new-style routine.

 The reason for having adaptor routines the way they are is
 that, if and when all direct calls to the old-style routine
 are done away with, the adaptor routine can simply be replaced
 by a real new-style routine that does the same thing as the
 old-style one did. Thus, the adaptor routine principle
 provides an evolutionary path from old-style code to new-style
 code.

 The MTS Coding Conventions
 57

 INDEX

 CCPUNT, 52
 RBEGIN, 18
 RCALL, 22
 RDISPLAY, 51
 RDSECT, 32
 REGS, 33
 REND, 19
 RENTER, 20
 REXIT, 26
 RNEXT_STACK, 43
 ROUTINE, 12
 RPOP, 46
 RPOPSTACK, 49
 RPR, 40
 RPRC, 42
 RPRDEF, 37
 RPREV_STACK, 44
 RPRI, 41
 RPRV, 36
 RPUSH, 45
 RPUSHSTACK, 47
 RRCTST, 34
 RRETURN, 25
 RSA, 31
 RSECT, 30
 RSET, 50
 RSPARLOC, 29
 RSPARSET, 27
 RTVENTRY, 39
 SUBROUTINE, 17

